Atlanta University Center

Digital Commons@Robert W. Woodruff Library, Atlanta
University Center

ETD Collection for AUC Robert W. Woodruft Library

5-1-1994

The design of a knowledge base for a cooperative
teleassistance system

Avare Stewart
Clark Atlanta University

Follow this and additional works at: http://digitalcommons.auctr.edu/dissertations

b Part of the Computer Sciences Commons

Recommended Citation

Stewart, Avare, "The design of a knowledge base for a cooperative teleassistance system" (1994). ETD Collection for AUC Robert W.
Woodruff Library. Paper 1715.

This Thesis is brought to you for free and open access by Digital Commons@Robert W. Woodruff Library, Atlanta University Center. It has been
accepted for inclusion in ETD Collection for AUC Robert W. Woodruff Library by an authorized administrator of Digital Commons@Robert W.

Woodruff Library, Atlanta University Center. For more information, please contact cwiseman@auctr.edu.

http://digitalcommons.auctr.edu?utm_source=digitalcommons.auctr.edu%2Fdissertations%2F1715&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.auctr.edu?utm_source=digitalcommons.auctr.edu%2Fdissertations%2F1715&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.auctr.edu/dissertations?utm_source=digitalcommons.auctr.edu%2Fdissertations%2F1715&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.auctr.edu/dissertations?utm_source=digitalcommons.auctr.edu%2Fdissertations%2F1715&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.auctr.edu%2Fdissertations%2F1715&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.auctr.edu/dissertations/1715?utm_source=digitalcommons.auctr.edu%2Fdissertations%2F1715&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cwiseman@auctr.edu

ABSTRACT
COMPUTER SCIENCE

STEWART, AVARE B.S., RENSSELAER POLYTECHNIC INSTITUTE, 1989
M.S., CLARK ATLANTA UNIVERSITY, 1994

THE DESIGN OF A KNOWLEDGE BASE FOR A
COOPERATIVE TELEASSISTANCE SYSTEM
Advisor: Dr. Erika Rogers
Thesis dated May, 1994

In order for knowledge base systems to behave in an
intelligent way, domain knowledge must be built into them. The
Teleopertive Visual Interactive Assistant (teleVIA) is a
knowledge based system, designed to facilitate cooperation
between a human and a remote robot. However, teleVIA must have
a repository of facts, or domain knowledge, that reflects up-to-
date information about the status of the teleassistance system.

Two questions with regard to this domain knowledge must be
addressed. In particular, what information does the knowledge
base consist of and how is it organized? 1In light of these
concerns, this work proposes a design for a knowledge base using
frames that will support cooperation between a remote robot and a

human.

CLARK ATLANTA UNIVERSITY

THE DESIGN OF A KNOWLEDGE BASE
FOR A COOPERATIVE TELEASSISTANCE SYSTEM

A THESIS SUBMITTED TO
THE FACULTY OF CLARK ATLANTA UNIVERSITY
IN CANDIDACY FOR THE DEGREE OF
MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

BY

AVARE STEWART

ATLANTA, GEORGIA
MAY 1994

Aevi Yo 30

(c) 1994
Avare” Stewart
All Rights Reserved

ACKNOWLEDGEMENTS

Dr. Erika Rogers, one whom I was fortunate enough to

have the opportunity to work with, thank you for your
patience and guidance in assisting me in completing a
Masters degree. I would like to thank my committee members,
Dr. Skrikanth and Dr. Warsi, for their advice and input. I
extend a special thank you to Dr. Warsi for mentoring and
guiding me during my entire academic stay at Clark Atlanta
University; and not letting me forget how to smile. I would
like to thank Elizabeth Nitz and Dr. Robin Murphy at the
Colorado School of Mines for prompt and thorough repsonses
that allowed me to get off the ground during the early
stages of this work. Khalil Khalif, to whom I owe a million
thanks for all his indispensable assistance which allowed me
make progress at times when I was completely stumped. I
thank Leslie Smart for his boost of confidence. I thank all

the administrative staff in the Computer Science Department,
Dr. Bota and the staff in Sponsored Programs for everything
that they have done to help me through the Masters program.

I thank Dr. Yvonne Freeman for her recommendations which led

me to Clark Atlanta University. I thank Jayson Taylor for

supporting me through this endeavor.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS « +« « v v o v v v v o . ii
LIST OF ILLUSTRATIONS« « v « v v « « o« « o . v

Chapter
1. INTRODUCTION 1
Purpose 1
Motivation . 1
Problem Statement 4
Approach . 5
2. BACKGROUND 7
Overview« .. 00000, 7
Components of the Cooperative Teleassistant . 9
3. DESIGN OF THE TELEVIA KNOWLEDGE BASE 17
OVerview v v v e e e e e e e 17
Representation Schema 17
Concepts and Their Relationships 19
Attributes 21
Navigation 34
4. IMPLEMENTATION « v v v v v v v . 42
Overview« 42
Knowledge Base Routines 42
Frame Instantiations 43
Sample Output 53
Evaluation 60
5. SUMMARY AND CONCLUSIONS « v v « o . . 63
Summary L L L Lo o 63

iii

| Future Work « « « ¢ « o o o o o o . . 64
Conclusions . . . « ¢ ¢« ¢ e e e e e e e e .o 64

BAPPENDIX A . . « & « o o o o o o o o o o o « o o = 67
APPENDIX B . &+ ¢« ¢ o« o o o o o o o o o s o o o o o« = 70
APPENDIX 74
APPENDIX 78
APPENDIX

APPENDIX

' APPENDIX O £
APPENDIX 114

APPENDIX 117

g = T @ m B O QN

APPENDIX 118

WORKS CITED . . + &+ « « o « o + « o o « & « « « « . . 120

iv

W o g3 o0 Ut W N

[}
o

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

LIST OF ILLUSTRATIONS

The Laboratory Environment

Cooperative Teleassistance System

Network Representation of the Knowledge Base
Environment Frame Attributes

Scene Frame Attributes '

Object Frame Attributes

Robot Frame Attributes

Sensor Frame Attributes

Data Frame Attributes

Environment, Scene and Object Frame Navigation .

Object Inheritance by a Scene

Robot, Sensor and Data Frame Navigation
Robot, Environment and Scene Frame Navigation
Instantiated Environment Frame

Instantiated Scene Frame

Instantiated Object Frame

Instantiated Robot Frame

Instantiated Sensor Frame

Instantiated Data Frame

Scenario Menu

Knowledge Base Menu Options

10
12
20
23
26
26
29
32
35
36
38
39
40
46
48
48
49
50
52
53
54

Output for

23. Outputc for

24. Output for

25. Output for

Objects vs.

the Environment Frame .
the Scene Frame
the Robot Frame

the Sensor Frame

26. Output for the Sensor Frame, continued .

27. Output for the Data Frame

Concepts

55
56
57
58
59
61

CHAPTER 1
INTRODUCTION

Purpose Statement
In order for knowledge based systems to behave in an

intelligent way, domain knowledge must be built into them.
The purpose of this work is to design a knowledge base that
supports cooperation between a remote robot and a human.

The focus of building the knowledge base is placed on
idenéifying the domain specific facts which must be
incorporated into the intelligent system and determining how

to represent them.

Motivation
In light of ongoing space explorations, scientists have
been seeking to successfully implement and improve current

telesystems paradigms. In fact:

the technical and popular press alike have long
envisioned the development of an intelligent robotic
capability ... Such a robot will have the cognitive,
perceptual, and motor skills to work cooperatively with
humans, sharing the responsibilities for both decision
making and task performance [Schenker, 1991].

Space is only one example of an environment for which

1

humans have no natural adaptation. With such inabilities,
it is important that tools be developed that allow
scientists to understand and interact with such hostile
environments as space.

Semi-autonomous robots are ideal to use in remote,
unexplored, hazardous or hostile environments. However,
semi=-autonomous robots have limited capabilities in
responding to an unexpected change in their environment.
Since unexpected changes may render the robots inoperable,
researchers are developing teleassisted systems to get past
the robot's limitations. Coiffet and Gravez suggest that a
teleassistant would allow on-line communication between a
human and a machine. Such collaboration would allow a human
to help a remote agent recover from an unanticipated problem
[Coiffet and Gravez, 1991]. To this end, one teleassistance
system is being jointly developed by Rogers, at Clark
Atlanta University, and Murphy, at the Colorado School of
Mines. Their teleassistant is comprised of two systems,
teleSFX (Sensor Fusion Effects) and teleVIA (Visual
Interaction Assistant). TeleSFX, as part of the remote
system, supports the robot's perception and motor behavior
using state based intelligent sensor fusion. TeleVIA,
supports the local system, is a knowledge-based system that
supports the exchange of information between human
perception and problem solving within a blackboard-style

architecture.

In this work, one or more mobile robots, with limited
autonomous capabilities, operate in a distant site away from
a human operator. The robot may be engaged in some task in
a remote, hazardous, or previously unexplored environment.
Robots gather data from their environment using different
types of sensors. The data from these sensors are combined
in a process called sensor fusion. If a failure occurs
during sensor fusion, the recovery system of the robot
attempts to autonomously classify the failure, by 1)
generating a set of hypotheses, and 2) testing each
hypothesis. Based on confirmations of the hypotheses, the
recovery mechanism selects a plan that will allow the robot
to continue its task. Since successful recovery requires
extensive knowledge about the domain, the semi -autonomous
robot may be unsuccessful in recovering from failures.
When this happens, the remote signals for help from the
human operator.

At the local site, the human, who may have information
the robot does not have, uses teleVIA to help the robot
recover from the failure. Certain images received from the
robot at the time of failure are presented to the operator
via the blackboard. The operator attempts to interpret the
contents of the images and draw conclusions about why
failure has occurred. TeleVIA focuses the user's attention
by presenting relevant information and visual enhancements

at specific stages during the human's problem solving

3

process. Once the operator reaches a conclusion, a possible

recovery strategy is suggested to the remote system.

Problem Statement

Besides the knowledge supplied by the robot and the
human, teleVIA has its own domain knowledge that it uses in
the cooperative problem solving process. This knowledge is
represented by facts, specific to the robot and its
environment, that are stored in teleVIA's knowledge base.
Without domain knowledge, teleVIA would have no intelligent
capabilities. Given the significance of domain knowledge,

the following questions must be addressed:

1) What domain specific facts about the robot
and its environment must be incorporated in
teleVIA's knowledge base?

How can these facts be represented in
teleVIA's knowledge base?

In light of these concerms, this work proposes a design
for a knowledge base that will help a human assist a remote

robot in recovering from a failure.

Approach
This research was approached by first doing background

reading on the teleassistance system developed by Rogers and
Murphy. Facts were collected based on the assumption that
teleVIA would need to know the factors that determine the
robot's motor behavior. Facts then thought to be important
to the human were collected. Information gained from a
graduate student working with Dr. Murphy at the Colorado
School of Mines allowed: 1) unnecessary facts to be
eliminated, 2) facts about the robot that were initially not
considered, to be added, 3) details about the robot and the
environment to be obtained, and finally, 4) concepts
obtained from the data collected, to be identified.

Next, a model was designed that reflected the
relationship among the concepts. To organize these
concepts, possible representations were considered. The
concepts were then mapped into the chosen representation.
Finally, code was written to reflect the design. The C code
was written using a Sun Sparc Station.

The remainder of this work is organized as follows:
Chapter 2 provides background information about the

cooperative teleassistance developed by Rogers and Murphy,

5

and addresses question number one of the problem statement.
Chapter 3 discusses details about the knowledge base design,
and addresses question number two of the problem statement.
In Chapter 4, a description is given of the programs used to
implement the knowledge base, sample output is provided,
and an evaluation is made of the knowledge base. Finally,
Chapter 5 provides a summary, comments on future work and

conclusions.

CHAPTER 2
BACKGROUND

Overview

In this chapter, a brief overview of Rogers and
Murphy's cooperative teleassistance system is given to lay
the foundation for the concepts that are represented in
teleVIA's knowledge base. An explanation is provided for
| each component of the teleassistant as it relates to the
| type of information that must be stored in the knowledge
base.

Semi -autonomous robots are ideal in hazardous
environments; however, semi-autonomous robots have limited
capabilities in responding to unanticipated changes in their
environment that may hinder their performance. The semi-
autonomous system is limited because it is difficult for
developers to predict all possible, unforeseen phenomena
when building the robot's intelligence. Given this,
researchers have considered teleassisted systems for
circumventing the problem associated with semi-autonomy.
Coiffet and Gravez refer to teleassistance as a particular
configuration of computing resources that provides task-
oriented assistance to a human operator that is interacting
with some remote system [Coiffet and Gravez, 1991]. They

7

suggest that a machine configured as a teleassistant
provides the operator with "punctual and powerful help."
Considering these suggestions, a cooperative teleassistant
is being developed by Rogers and Murphy [Rogers and Murphy,
1993]. Their teleassistant is comprised of two systems,
teleSFX and teleVIA.

TeleSFX is a modification of Murphy's work on Sensor
Fusion Effects - SFX [Murphy, 1992]. In teleSFX, the motor
behavior of a robot is supported by Intelligent Sensor
Fusion. Intelligent Sensor Fusion constitutes the robot's
perception i.e., the robot's ability to "know" what is in
its enviromment and "react" to this knowledge.

TeleVIA is an expansion of the work done by Rogers on
the Visual Interactive Assistant (VIA) [Rogers, 1992].
TeleVIA is designed to "cooperatively assist human
perception and problem solving in a diagnostic visual
reasoning task" [Rogers and Murphy, 1993]. TeleVIA provides
information to help the human focus on the relevant
information, at the right time, during the human perceptual
and problem solving process. Perception is the human's
ability to see an image and make an intermal representation
of that image. Human problem solving refers to the human's
ability to provide an explanation of the internal
representation obtained from the perceptual process.

TeleSFX is used to support robotic perception and motor

behavior, whereas, TeleVIA is used to enhance the human's

perception and problem solving abilities. By combining
these two systems, the human's enhanced perceptual
capabilities can augment the robot's autonomous perceptual
system, thereby circumventing the problem associated with
using semi-autonomous robots. A key aspect of their work
includes features that facilitate cooperation between the

remote robot and human.

Components of the Cooperative Teleassistant

In this domain, an autonomous, mobile robot operates
in a remote environment. The environment may be a

previously unexplored planet, or, the enviromment may

contain chemical contaminants that are harmful to humans.
However, since Rogers & Murphy's cooperative teleassistance
is still under development, the robots are restricted to a
laboratory. Figure 1 shows how the laboratory may be
partitioned into several scenes; they are: drill press, vcr
monitor, .door, or the student desk scenes. Each scene
contains at least one object that distinguishes it from the
other scenes.

There can be one or more robots in the lab, each
engaged in different tasks. Two robots are used in
developing the teleassistant. The first robot is George, a
Denning DRV mobile robot at Georgia Institute of Technology.
The second is Clementine, a Denning MRV mobile robot, at

the Colorado School of Mines.

drill press

drill press scene

vcr and monitor
scene

) blue equipment
///cabinet

student desk
scene

N

door
scene

Figure 1: The Laboratory Environment

10

Although George is no longer being used, it has been
included to emphasize the fact that this teleassistance
system may support more than one robot.

The robot gathers data from its surroundings using
différent types of sensors. Collectively these sensors are
called a sensor suite. A suite may consist of the following
sensors: a Sony Hi8 video camcorder, a Pulnix black and
white camera, an Inframetrics infra-red camera and a
Polaroid 24 ring Ultrasonics transducer. Each robot makes
observations, via its sensors, for different scenes.

The components of the cooperative teleassistant
(written in bold text) are described below. Figure 2 shows
the components of the cooperative teleassistant and how they
interface with each other.

Autonomous Execution (defined as the robot's ability
to autonomously gather and combine observations from
multiple sensors [Murphy, 1992]), begins with a sensing
plan. Part of this sensing plan identifies the suite of
sensors (sensorl, sensor2,...) and particular aspects of the

current scene that will be observed (i.e., color or heat).

11

Autonomous

Remote Autonomous 4
; E t
R)gb;t - Execution I;a Cneglir(:; teleSFX

1
Interactive

Configuration
v | Images| {1
Interactive Exception = 1
Handling [~ 17 Blackboard
I | - teleVIA l;
} } || Hypotheses Attention | |
: Current : -{ | Directives
i Context |
l !
,,,,,,,, SR BN
| 5k s | Hypothesis Manager Strategy
i Local | HE | 2 - Selector
, a Il >t tele VIA teleVIA
i Operator 15 H =} High Level
) K-S s H 2F Knowledge Sources 8
| - g I E : Planning
EHEL
: % 1 2f
18 L -3 -
= | Attention Director

teleVIA Detailed Attention
; Knowledge Base Planning

Figure 2: Cooperative Teleassistance System

12

The information gathered from each sensor is combined
by the Autonomous Execution mechanism in a process called
sensor fusion. As mentioned previously, fusion constitutes
the robot's perception of what is in its environment. As
part of the fusion process, evidence is generated and used
to support the motor behavior of the Remote Robot in a given
task.

If a failure occurs at a particular state of the fusion
process, control passes from the Autonomous Execution module
to Autonomous Exception Handling. Using a two-part
strategy, Autonomous Exception Handling attempts to make a
quick recovery so the robot may continue its task.

In part one of the recovery process, Autonomous
Exception Handling identifies the type of failure. Robot
hypotheses are generated and tested to determine: 1) if a
sensor has malfunctioned, or 2) if a change in the
environment has taken place. Based on confirmation of the
hypothesis, the Exception Handling module will first try
repairing the current sensing plan. A plan may be repaired
by either removing a sensor from the suite or adding one to
it. If the sensing plan cannot be successfully repaired
then an attempt is made to replace the current sensing plan.
The replacement is based on challenges to environmental
preconditions that specify the operating conditions that
must be met in order for the sensors to operate.

Autonomous Exception Handling may not always get the

13

robot-going again. Two examples illustrate this point.
First, the hypothesis generated by the Autonomous

Exception Handling may be confirmed, but actual recovery
might necessitate human intervention. For example, if the
lights go out, the exception handler may successfully
identify that an environmental change has taken place;
however, human intervention would be required for the lights
to be turned back on.

In the second example, the generated hypothesis may not
be confirmed, and again, Interactive Exception Handling is
necessary. Here, the exception handler would conclude that
a sensor was responsible for the failure when in actuality
the robot may be attempting to make observations of the
wrong scene. Here, the sensors are operating properly but a
failure has occurred in the fusion process and the robot is
not able to continue its task.

If remote recovery is not successful, then part two
of the recovery strategy signals the local operator for
Interactive Exception Handling. At this time, pertinent
information related to the perceptual status of the robot at
the time of failure gets posted to the Blackboard.

The teleVIA Blackboard is a key component of the
teleassistant because it facilitates communication between
the robot and the human. The Blackboard is used to hold
specific, task-related information obtained from the robot

that teleVIA uses to help the human assist the robot. The

14

blackboard reflects the contents of the knowledge base
before and after a robot experiences a failure.

Interactive Exception Handling receives the signal from
the remote for the operator to assist in the recovery
process. This panel will also contain information about the
type of failure, the sensors presumed to be causing the
failure, and evidence for each sensor's observations at the
time of failure. If the remote tried to recover a second
time, the operator would also have evidence for the second
attempt. The contents of this panel reflect the information
contained in the knowledge base after a failure has taken
place.

The Current Context panel contains up-to-date
information about the robot's task, the environmental
conditions such as light and temperature, and the sensors
that are active. This reflects information stored in the
knowledge base before a failure has taken place.

Robot Hypotheses, which were generated when the remote
was attempting to recover autonomously, get posted to the
blackboard when assistance from the local operator is
requested. The TeleVIA Hypothesis panel contains hypotheses
generated by teleVIA during Interactive Exception Handling.
A selected TeleVIA hypothesis may result in the local
operator selecting sensors or an alternate recovery plan.
Once an alternate is selected, the robot may be able to

continue its task. Thus, Interactive Configuration has

15

taken place.
Images, obtained from the robot, may be displayed and

enhanced. TeleVIA guides the user in a direction that may
lead to a recovery by affording visual enhancements of
displayed images.

TeleVIA attempts to draw upon the experience of the
human to compensate for that which the robot may lack in
recovering from an unexpected change. However, teleVIA's
ability to do so is based upon information that must be
stored in the knowledge base before and after a failure.

In this chapter, facts about cooperative teleassistance
designed by Rogers and Murphy have been presented. The next
chapter gives details about the design of the knowledge
base. The design is determined by the facts specific to the

domain presented in this chapter.

16

CHAPTER 3
DESIGN OF THE TELEVIA KNOWLEDGE BASE

Overview
This chapter explains the details of the teleVIA
knowledge base design. The choice of frames as a
representation schema is explained. Next, the concepts
represented in this schema and their relationships are
defined, followed by an explanation for each concept's
attributes. Finally, examples are given for navigating

through the knowledge base.

Representation Schema

Representation schema refers to the type of structure
that will be used to store knowledge about the concepts. In
the teleVIA knowledge base, frames are used as a
representation schema for several reasons. First, the
choice of frames is related to the type of problem solving
encountered in exception handling. Waterman suggests that
frame structures are good to use if the "content" of the
data is the basis for problem solving [Waterman, 1986].

Much of the information stored in teleVIA's knowledge base

represents facts about the robot and its surroundings. When

17

a failure occurs, the data obtained from the robot at the

time of failure can be compared with a priori knowledge
stored in the knowledge base. Differences between the two
data sets may provide insight into the reasons why failure
occurred. If the knowledge base contained information about
particular objects in a scene, a local operator may know if
the robot was attempting to make observations of the wrong
scene. By comparing the object list for the correct scene
with the objects in the image obtained from the robot, the
local operator may conclude that the scenes are different if
all the objects are different.

Second, frames allow storage of both static and dynamic
information. Dynamic information is important because some
data can only be obtained from the remote during Interactive
Exception handling. As mentioned previously, when the local
system is invoked, pertinent information related to the
perceptual status of the robot at the time of failure is
passed to the local system. This information is dymamic
because it is obtained upon failure.

Static data is obtained by the teleassistant before
run-time. Static data is important for successful exception
handling because it represents facts that are independent of
those that may be obtained because of Interactive Exception
Handling.

Third, frames allow the concepts to be represented as a

collection of attributes. Some attributes link concepts

18

together. Thus, representing concepts as a collection of
attributes easily and naturally expresses the relationships
that exist among the concepts in the robot's surroundings.
Additionally, frames allow the knowledge base to be easily
expanded as more information is obtained that will enhance
cooperative teleassistance. Finally, the use of frames is
consistent with the representation schema used in both

teleSFX and teleVIA.

Concepts and Their Relationships

This section describes the concepts and the
relationships among the concepts that are represented in the
knowledge base. The facts specific to the discussion in
Chapter 2 are used to determine the concepts, their roles
and attributes.

Figure 3 shows the network representation of the
concepts in the knowledge base. The arrows represent the
relationship between the concepts. In particular, the
direction of the arrows indicates how the concepts are
related to each other and the labeled arcs show the
attributes that relate them. Note that some attributes are

used in pairs to describe a particular relationship between

operates_in .
Environment

part_of

Figure 3: Network Representation of the Knowledge Base

two different concepts. The attribute pairs are represented
by bi-directional links in the network. These attributes
are called inverse attributes [Rich & Knight, 1991].
Relationships described by these attributes is one of
inheritance. Note that the hierarchy among the concepts
results from inheritance.

The concepts (written in bold text below) correspond to
the nodes in Figure 3. Recall that the autonomous, mobile
robot (or robots) operates in a remote, hazardous
environment. For development purposes, however, the robots
operate in the lab. The lab may contain several scenes,
such as a student desk scene or a drill press scene (see
Figure 1). The only means by which a robot can gather
information about its enviromment is through its sensors.
Each robot has multiple sensor types (or a suite of
sensors). Data from these sensors are combined, in a
process called sensor fusion, to produce a quantified value
that supports the motor behavior of the robot in a given
task. Each sensor provides data for its surroundings. This

data is specific to the type of sensor used to obtain it.

Attributes
Each concept in Figure 3 has several attributes. In
the discussion that follows, an explanation is provided for
each attribute and why it was chosen. Symbols are used to

show a specific role an attribute may have. The symbols

21

signify the following:

Rectangle: (0O) signifies that the attribute
is a frame or set of frames.

Oval: (o) signifies that attributes are
grouped together because they
are often used together.

Plus: (+) signifies that the attribute
relates the concept to another
concept through membership.

Asterisk: (*) signifies a dynamic attribute.

Attributes that have a plus sign next to them represent
the arcs in Figure 3. Attributes that have an asterisk next
to them indicate that their value is subject to change when
the robot is operating autonomously or when a failure

occurs.

Environment Frame

The Environment Frame attributes are shown in Figure 4.
The attribute NAME identifies the environment the robot is
in. The environment may have a number of scenes; thus,

HAS SCENE records all the scenes for the environment. In

order for the robot to accomplish its

NAME

HAS_SCENE

CURR_SCENE *

ASSOC_TASK

Environment Frame

’ LIGHT_INTENSITY *

! TEMPERATURE *

OCBJECT_LIST

| Figure 4: Environment Frame Attributes

23

task, it may have to gather data for a given scene;

therefore, CURR SCENE identifies the scene currently being
observed. There may be several robots, each engaged in a
different task, so the attribute ASSOC TASK, lists all
tasks associated with the environment.

Given that the operator will not share the same
environment with the robot, it is essential to know as much
as possible about the environment's physical properties.
DIMENSIONS, measured in feet, consists of width, height and
length, and are used to provide the operator with
information about the extent of the robot's surroundings.
LIGHT INTENSITY captures information about the brightness of
the light in an environment. The lights may either be 'on',
'off" or 'dim'. TEMPERATURE in an environment is measured
in degrees fahrenheit. Recall that the recovery system's
selection of a replacement plan is based on challenges to
environmental preconditions. Preconditions specify the
operating conditions that must be met in order for the
sensors to operate. Insufficient lighting or extreme
temperatures in the lab may prevent a sensor from working.

A number of objects may be in an enviromment; part of a
robot's task may require it to manipulate or navigate around
an object. Therefore, OBJECT LIST keeps a list of all the
objects known to be present in the enviromment. The

Environment Frame is linked to the Scene Frame through the

HAS SCENE attribute.

24

Scene Frame

The attributes for the Scene Frame are shown in
Figure 5. More than one scene may be part of an
environment; therefore, NAME and PART OF are used to hold
the name of the scene and the environment, respectively.
PART OF links the scene frame with the object frame. A
scene is comprised of a subset of all the objects from the
environment frame's OBJECT LIST. The attribute HAS OBJECT
lists all objects in the current scene. Each scene contains
at least one object that distinguishes it from other scenes.
Images that are requested from the remote are images of
scenes in the environment. The HAS OBJECT attribute may
help the operator verify scene information by comparing the
objects in the HAS OBJECT list with the objects present in

the image received from the robot.

Object Frame
There may be special features about an object that may

be important to teleVIA only or, to both teleVIA and the
robot. For example, the robot does not need to know the
NAME of an object, see Figure 6. On the other hand,

SCENE FRAME

NAME

»| PART_OF

HAS_OBJECT

Figure 5: Scene Frame Attributes

NAME

OBJECT FRAME

—_— , COLOR

Figure 6:

TEMPERATURE

Object Frame Attributes

temperature and color may be important to both the robot and

the operator. TEMPERATURE values can be 'above ambient',

'ambient', or 'below ambient'. Unlike the temperature slot

in the Environment Frame, the value for this slot do not

indicate an actual numeric temperature but a temperature

relative to the environment. This is done because most of

the cbjects in an environment will have a temperature close

to the ambient temperature; therefore, the default value for

this slot is 'ambient'. As an exception, some objects may

have temperatures above or below the ambient temperature.

Then, the robot would need to know that the object could

have an exceptional thermal characteristic so that an

infrared sensor could be used in the sensor suite. If

teleVIA knew that an object had a temperature greater than

the ambient temperature, it could use this information,

(along with fact that an infra-red sensor was part of the

sensor suite) to employ appropriate enhancements for images
that contained this cbject.

The COLOR of an object may be important in the robot's
perceptual process because the sensing plan may require a
sensor to observe the object's color. On the other hand,
the color may be important to the operator because the
operator may easily identify an object in an image by its

color.

27

Robot Frame

The Robot Frame attributes are shown in Figure 7.
Every robot, uniquely identified by NAME, OPERATES-IN an
environment. OPERATES IN identifies the environment and
establishes the link between the Robot Frame and the
Environment Frame. Each robot is given a task. The task
the robot is engaged in may be related to the failure;
therefore, the GIVEN TASK attribute is provided.

HAS SENSOR consists of a list of sensor frames
describing the types of sensors mounted on the robot. The
types of sensors for each robot are known before run-time
however, at any given time, different sensors may be active.
CURR SENSORS STATUS keeps track of the current status of
each sensor. The status of a sensor may be one of the
following: ‘'nmot available', 'active', 'inactive' or
'suspect'. If a sensor is not available then it can never be
part of a sensing plan because either the robot does not
have that sensor mounted, or the sensor has malfunctioned
and can no longer be used. Moreover, if a sensor is not
available for the robot that experiences a failure, then
this sensor cannot be selected in the recovery plan during
Interactive Configuration. An active status means that the
sensor is part of the current sensing plan. Inactive means

that the robot has that particular sensor but it is not part

28

NAME

OPERATES_IN +

GIVEN_TASK *

ROBOT FRAME

HAS_SENSOR

CURR_SENSOR_STATUS *

FAILURE_TYPE *

Figure 7: Robot Frame Attributes

29

of the current sensing plan. Suspect means that a failure
has taken place and the sensor is considered as possibly
causing the failure. TeleVIA needs to know which sensors
are presumed to be causing the failure. Because it may
attempt to provide information to the operator based on the

status of a sensor.

A robot may experience four types of failures: ‘'high
conflict', 'missing evidence', 'below minimum' and 'highly
uncertain'. This information is stored in the FAILURE TYPE

attribute, and gets posted to the Interactive Exception
Handling panel of the Blackboard when the local system is

signalled.

30

Sensor Frame

Since each robot has different types of sensors, NAME
and USAGE (in Figure 8) identify each sensor and why it is
used, respectively. The usage for each sensor is as
follows: black and white sensor may be used to detect
visible light, the color sensor may be used to detect color
in visible light, the infra-red sensor may be used to
detect heat, the ultrasonics sensor may be used to detect
range, and the ultraviolet sensor may be used to measure
environmental changes.

-DATA TYPE is used to specify the type of data provided
by a sensor because data is specific to a sensor. For this
work, data can be either image or numeric. The black and
white, color, infra-red, and ultraviolet sensors provide
image data, whereas the ultrasonics sensor provides numeric
data. Both the USAGE and DATA TYPE attributes may help
teleVIA select the appropriate enhancements. PART OF
identifies which robot the sensor belongs to. FOV stores
information about the maximum horizontal and vertical field
of view obtainable from the sensor.

EVIDENCE consists of PREV_EVIDENCE, CURR_EVIDENCE, and
SECOND EVIDENCE. PREV_EVIDENCE contains observation

31

NAME

PART_OF +

USAGE

SENSOR FRAME

DATA__TYPE

PROVIDES *

*

Figure 8: Sensor Frame Attributes

evidence obtained from the robot prior to a failure.
CURR_EVIDENCE contains the evidence that was generated by
Autoriomous Exception Handling when a failure occurred and a
first atﬁempt at recover was made. SECOND EVIDENCE contains
values that would be generated if the robot attempted to
recovery from the failure a second time. Evidence gets
postéd to the Interactive Exception Handling panel of the
blackboard when the local system is invoked.

There are three types of evidence obtained from a
sensor. The types are: 'support', 'against' or 'don't
know'. Each type may have values between one and zero. A
'0' represents a weak belief and 'l' represents a strong
belief that a particular set of features set forth by the
sensing plan was observed by the robot's sensor.

‘E_LIST is a list of enhancements available for the data
that is obtained from each sensor. Enhancements are
important in directing the operator's attention to aspects
of an image that may lead the operator to some conclusion
about why failure occurred. Some examples of enhancements
available are: false color, for the infra-red sensor, and

occupancy grid and polar plot, both for the ultrasonics

sensor. PROVIDES is a link to the Data Frame.

Data Frame

Figure 9 shows the data frame attributes. PROVIDED BY
identifies the sensor that provided the data. SCENE
determines what scene the data is for. The current scene
may change during Autonomous Execution. This attribute
ensures the correct data is associated with the current
scene. Also, during Interactive Exception Handling, data
for a particular scene may be displayed. This attribute
ensures that the correct scene is chosen.

IMAGE SIZE may be important. The transmission time may
present a bottleneck if the images are very large. The
size of an image is determined by horizontal size, vertical
size, and depth, in bits. Based on the size of the image,
only a relevant portion of the image may get transmitted to
the local system. Both IMAGE and NUMERIC DATA attributes
are files that store data obtained from the robot at the

time of failure and prior to failure.

Navigation
This section shows examples of how navigation among the
frames is accomplished through each level of the knowledge

base hierarchy.

Navigating through the Environment, Scene & Object Frames

In Figure 10, an instance of an environment is

represented by the lab. In this example, the environment

34

PROVIDED_BY +
SCENE

DATA TYPE

/ *
DATA FRAME - IMAGE DATA

*
v NUMERIC DATA

| Figure 9: Data Frame Attributes

Environment instance of
Frame e~ ot e} Lab
A
/
has part_of 5
/ has N
/
/ \
A y A
Scene instance of Student Scene Scene Scene
Frame Desk 2 3 4
|
‘ has part_of has
instance of & v r
Object Chair Degk pbbject 3 bject 4 pbject S
‘ Frame <———](Scene 1) (Scene 1) {Scene 2) (Scene 3) Scene 4)
| Figure 10: Environment, Scene and Object Frame Navigation

36

has four different scenes, one of which is the student desk
scene. Each scene has a list of object frames. Two

objects, a chair and a desk, are shown and both objects are
part of the student desk scene (scene 1). Note there is at

least one unique object for every scene.

Object Inheritance

Figure 11 shows how objects from the Environment
Frames' object list are inherited by a scene. Objects one
through four are located in the Lab but only the chair and
desk are located in the student desk scene. Note that more

than one object may belong to the same scene.

Navigating through Robot, Sensor & Data Frames
In Figure 12, the robot George is an instance of a

robot frame, and it has four instances of the sensor frame.
Three sensors are shown in the figure. They are: black and
white (BW), Infrared (IR), and color sensors. FEach sensor
has a data frame and provides data that is unique to that
sensor, hence there are four instances of the data frame,

one for each sensor.

Navigating through the Robot, Environment & Scene Frames
In Figure 13, George is an instance of the Robot Frame.

George operates in the Lab, which is an instance of

37

Environment

instance_of

Frame Lab
A
has part_of
has
Object instance_of
Frame IObjectl Chair Desk Object4
has part_of has
Scene instance_of Student Desk
Frame Scene
Figure 11: Object Inherited by a Scene

i Robot

‘ instance_of
Frame — -———] George
| ‘[A :
/// \\\
has l Ipart_of : S N N
L - ,/ has A e
] ' \
o
Sensor instance of Sensor
: Frame «-—— BW IR COLOR 4
l -
T A T
has part_of has
- 4
Data instance_of BW IR color Sensor
Frame Sensor Senor Sensor 4
_ ,,,,va,,_,i.; Data Data Data Data

Figure 12: Robot, Sensor and Data Frame Navigation

39

Robot instance of
Frame George
has part_of
has
Environment instance_of Lab
Frame
e \
e \\ ~
has part_of " has .\
e \ “
- AT
E Scene instance_of Student Scene Scene Scene
! Frame Desk 2 3 4

Figure 13: Robot, Environment and Scene Frame Navigation

40

the Environment Frame. The lab has a scene frame and there
may be several scenes in the lab; therefore, scenes one

through four are instantiated in the lab, one scene being

the student desk scene.

41

CHAPTER 4
IMPLEMENTATION

Overview
In this section, the programs used to implement the
knowledge base are described. Examples of the type of data
that may f£fill each frame's slots are shown and sample output
for the knowledge base routines is given. Finally, an

evaluation of the knowledge base is made.

Knowledge Base Routines

The knowledge base was implemented using 10 routines,
totaling about fifteen hundred lines of C code. These
routines are described as follows: FRAMES.H contains the
structures that define the knowledge base (see Appendix A).
KBASE.H contains the facts about the robot and the
environment (see Appendix B). INIT.C (see Appensix C)
initializes all the frames in the knowledge base. DATA.C
(see Appendix D) instantiates the frames. There are two
environments - a lab and a warehouse. The robot frame was
instantiated with two robots: George and Clementine. George
has five sensors: black and white, color, infra-red,

ultrasonics, and an ultraviolet. Clementine has three

42

sensors: black and white, color and ultrasonics. UPDATE.C
(see Appendix E) updates the values of the dynamic
attributes when a simulated failure occurs. PRINT.C (see
Appendix F) outputs all attribute values. STRING.C (see
Appendix G) provides an interface so that information stored
in the knowledge base is presented to the user as text
strings. MISC.C (see Appendix H) contains miscellaneous
routines. GLOBAL.H (see Appendix I) contains global
variables, and TEST.C (see Appendix J) executes the above

routines.

Frame Instantiations
For the purposes of instantiating the frames with

static data, it is assumed that the relevant information is

available, and can be hard coded into the knowledge base.

On the other hand, when a failure occurs, the dynamic values
must be updated. A question arises about how this data is
integrated into the knowledge base. In particular, does the
robot dump the failure data to a file or does the robot put
it directly onto the blackboard?

If it is assumed that the failure data is dumped into a
file than teleVIA must do some preprocessing in order for
the blackboard contents to reflect the status of the robot.
Given this, the communication burden is on the local system.

If the remote sends the failure data directly to the

blackboard, then the remote must be reconfigured so that it

43

can communicate directly with the blackboard's data
structures. Now, the communication burden is on the remote.

These issues have not been resolved; however, for the
purposes of this work, it has been assumed that the robot
places its data in a file. As a result, the blackboard
structures can access the failure data after it has been
stored in the knowledge base.

For the instantiated frames in this example, a robot,
George, is operating in a lab and is acting as a security
guard to determine if the student desk scene has changed. A
failure has occurred because George is attempting to gather
data while facing the wrong scene (the drill press scene) .
Autonomous Exception Handling was not able to get the robot
going again. As a result, the sensors presumed to be causing
the failure (black and white and infra-red) have been
stored in the knowledge base, along with the type of failure
and evidence for the black and white, infra-red and
ultrasonic sensors. Given this scenario, the remainder of
this secﬁion shows the type of data that would fill each
slot of the knowledge base frames. The slot names in bold
text with an asterisk next to them correspond to the dynamic

attribute values mentioned in Chapter 3.

Environment Frame
Figure 14 shows that George operates in a lab with four

scenes, the student desk being the current scene. The

44

dimensions of the lab (in feet) are provided in WIDTH,

HEIGHT and LENGTH slots. The actual dimensions and
temperature for the lab were not obtained so the values

shown here are merely examples of the type of data that

Environment Frame

NAME

lab

HAS_SCENE

(ver/monitor-scene,
drill-press-scene,
student-desk-scene,
door-scene)

*

OBJECT_LIST

CURR_SCENE | student-desk
ASSOC TASK curityv-guard

WIDTH 12 feet

HEIGHT 10 feet

LENGTH 12 feet

———* LIGHT INTENSITY on
* TEMPERATURE | 68.5 farenheit
(ver, monitor, cabinet,

drill press, desk,
chair, door,
fire extinguisher)

Figure 14:

Instantiated Environment Frame

46

would fill those slots. The default value for
LIGHT INTENSITY is 'on'. A list of all objects present in
the environment is shown. CURR SCENE is an index into the

HAS SCENE list.

Scene & Object Frames

In Figure 15, the student desk scene contains three
objects. These objects are inherited from the OBJECT_ LIST
slot in Figure 14. An example of the cabinet object frame
is shown in Figure 16. The temperature of the object has

the default value 'ambient'.

Robot Frame

In the instantiated Robot Frame of Figure 17, George
has five sensors. For this sensing plan, the sensors have
the following status: the ultrasonics sensor is 'active';
the ultraviolet and color sensors are 'inactive'; the
infrared and black and white sensors are 'suspect' sensors
in a 'high conflict' failure. The position of the attribute
values in the list for HAS SENSOR and CURR_SENSOR STATUS

corre SpOl’ld one-to-one.

Sensor Frame
In Figure 18, the PROVIDES attribute is a list of data
frames for all the sensors available, however; actual data

is stored for only currently active and suspect sensors.

47

Scene Frame

Figure 15: Instantiated Scene Frame

Object Prame

NAME [cabipet
; COLOR | blue

TEMPERATURE | Amhient

Figure 16: Instantiated Object Frame

48

ROBOT FRAME

NAME

George

QPERATES IN

lab

* GIVEN TASK

securitv-guard

HAS_SENSOR

(BW, Color, Infrared
Ultrasonics,
Ultraviolet)

* CURR_SENSOR_STATUS

(suspect, inactive,
suspect,active,
inactive)

* FAILURE_TYPE

high-conflict

Figure 17:

Instantiated Robot Frame

Sensor Frame

NAME BY
PART OF George
USAGE detect-visible-13j ght
HORZ FQV 23.5 degrees
VERT FOV 25.0 degrees

DATA TYPE

image

* PROVIDES

< list of data frames
for active and suspect
sensors >

(0.00, 1.00, 0.00)
(0,00, 0.0Q, 0.00)
(0,00, 0,00, 0.00)

E_LIST

< no enhancements
availible >

Figure 18:

Instantiated Sensor Frame

50

NAME is an index into the PROVIDES list and E LIST, the list
of enhancements. The evidence is shown and previous
evidence values are zero because it is assumed that the
failure has taken place before a history of evidence could

be established.

Data Frame

Since there are three sensors involved in the sensing
plan (denoted by the active and suspect values in
Figure 19), the knowledge base will contain three
instantiated data frames. Figure 19 shows example data for
the black white sensor. An image of the current scene at
the time of failure is contained in a file pointed to by
CURR_IMAGE. PREV_IMAGE would contain an image received from
the robot just before failure occurred, however it is

‘ assumed that no history was established before failure

occurred. PREV NUMERIC and CURR_NUMERIC files would contain

data from the ultrasonics sensor.

Data Frame

PROVIDED BY BW

SCENE | student desk

DATA_ TYPFE image

*CURR_IMAGE <pointer to a file>

— *PREV IMAGE | <pointer to a file>

* CURR NUMERIC no-data

* PREV NUMERIC no-data

HORZ SIZE €40 bhits

VERT SIZE

DEPTH 8 bhits

Figure 19: Instantiated Data Frame

Sample Output

In this section sample output for each of the
instantiated frames in the previous section is provided.
Figure 20 shows that Scenario 1 was used to simulate a
failure. In Scenario 1, the robot George is making
observations of the wrong scene.

Figure 21 shows the menu options to print the contents
of each frame for two robots, Clementine and George. The
output below was obtained by selecting options one, two, and
six through nine. The code for these menus is in

Appendix F.

*kokkk Choose Scenario *okok ok k

- Wrong Scene

- Lens Covered - Second Recovery Attempt
- Lights Out

- Fluctuating Readings

- IR Enhancement

- None (Quit)

AUk W PR

Select a number corresponding to the failure you
want to simulate: => 1

Figure 20: Scenario Menu

53

L2 22222 22X 2222222222 X232 XXX 2222222222222 22222 2
*kkk Menu - Print Knowledge Base Frames ***

*kkkk Choose a Frame to Print *kkk ok

1 - Environment

2 - Scene
*** Clementine ***
3 - Robot
4 - Sensor
5 - Data
* % %k George %* % %
6 - Robot
7 - Sensor
8 - Data

9 - None (Quit)

Select a number corresponding to the frame you want to
print: =>

Figure 21: Knowledge Base Menu Options

54

Environment Frame

Output for the environment frame contents is shown in
Figure 22. The list of all scenes and tasks for the
environment are shown. Figure 23 shows output for the scene

frame and all the objects within the scene.

Khkkdk ko hkkk ok hk kA Ak kA kA kA kkkkkkkkkhkk ke hkhkkkkx
**k*x%x% Qutput for Environment Frame Contents **%*x*

Name: Lab

Width: 12.000000 feet
Height: 10.000000 feet
Length: 12.000000 feet

Light Intensity: On

Temperature: 68.500000 fahrenheit
Current Scene: Student -Desk-Scene

*** Scenes for Environment #***
Drill Press Scene

VCR/Monitor Scene

Door Scene

Student Desk Scene

* %k k Tasks for Environment ***
Security Guard

Figure 22: Output for the Environment Frame

Figure 23 shows output for the Scene Frame. All the
objects present in this scene are shown, along with the
characteristics for each object. Output for the object
frame is lengthy because it lists every object in the
environment and its characteristics; therefore, it has been

omitted here.

ddhkdkkhkkhkhkhkhkhkkhkhkkhkhkkkhkhhhkhkhhkhkkrhkhkhkrhkhkhkhkkhkkkhkkkd
%x* Qutput for Scene Frame Contents **

Scene Student -Desk-Scene
Environment : Lab

*** Object in this Scene ***

Object: Cabinet
Color: Blue
Temperature: Ambient

Object: Desk
Color: Blue
Temperature: Ambient

Object: Chair
Color: Yellow
Temperature: Ambient

Figure 23: Output for the Scene Frame

Robot Frame
Figure 24 shows the Robot Frame contents for the
Geordge. Only those sensors which are either active or

suspect are printed.

khkkdhkhkhkkkkhkhkhkhkhkhkhkhkhkhkkkkkhkhkkkkhkkhkhkhkhkhkhkhkhkhkhkkkhkkkhkkk

Fkkkok Output for Robot Frame Contents *khkk
Robot Name: George

Environment Name: Lab

Robot Task: Security Guard

Failure type: High Conflict

| *** Current Sensor List Status: ***

Sensor: Black & White
Status: Suspect

Sensor: Infra-red
Status: Suspect

Sensor: Ultrasonics
Status: Active

Figure 24: Output for the Robot Frame

Sensor Frame

In Figures 25 and 26, sample output for the Sensor
Frame is shown. In Figure 26, only output for the black and
white sensor is shown. Second evidence has been omitted
since it is assumed that George did not try to recover a

second time before signalling for help.

L2 22222 22222222322 X222 222222222222 22
*kok ok k Sensor Frame Contents ****%
Sensor: Black & White

Robot : George

Usage: Detect Visible Light
Horz Fov: 23.500000 degrees
Vert Fov: 25.000000 degrees
Data Type: Image

Sensor: Infrared

Robot : George

Usage: Detect Visible Light
Horz Fov: 46.400000 degrees
Vert Fov: 40.000000 degrees
Data Type: Image

Sensor: Ultrasonics

Robot : George

Usage: Detect Range

Horz Fov: 0.000000 degrees
Vert Fov: 0.000000 degrees
Data Type: Numeric

Figure 25: Output for the Sensor Frame

58

dkhkkkkdkdkhkkhkkkhkdkhkhhkdkdkhkhhkhkhkhrhkhkkkkhkhkkhkhhkkkkkdkhkhhkhd

*kdkkk Output for Sensor Frame Contents ****%
(cont.)

Evidence for Active and Suspect Sensors
(Support, Against and Don't Know
is listed from top to bottom)

Black & White

Current Beliler: .000000
.100000

.000000

.000000
.000000
.000000

Previous Belief:

OO0 OOQ

‘ ***x st of Available Enhancement for Sensors ***

Black & White: none

Color: none

Infrared: false color
Ultrasonics: occupancy grid
Ultrasonics: polar plot

Figure 26: Output for the Sensor Frame, continued

Data Frame

Output for the data frame is shown in Figure 27. The
current and previous data files have been omitted in the
output. The default file names for the image and numeric
data are: 'prev raw_image', 'curr_raw_image',

'prev_raw numeric', and 'curr_raw_numeric' (see Appendix A) .

Evaluation

For the purposes of this work, the robot operated in a
lab. If the robot was to be placed in a more hostile
environment i.e., on a remote planet, other environmental
factors should be considered. It was assumed that the only
known environmental factors that impact the performance of
sensors are temperature and light intensity. Other factors
such as duration of exposure to atmospheric elements or

motion may adversely effect the sensors' performance.

This model captures the concepts within the cooperative
teleassistance domain set forth by Rogers and Murphy.
Furthermore, the choice of frames provides the functionality
needed in this type of problem solving, namely, storage of
both static and dynamic data. Frames also allow the
knowledge base to have attached procedures ,i.e.,
enhancement procedures. The choice of frames provides
flexibility that may be necessary as the knowledge base

grows in size and complexity.

60

kkkhkhkhkhkhkhkhkkhkhkhhkhkhhkhhhhhdhhkdhdhkhkhhhkkhkhkdkkkdkk

%*x% Qutput for Data Frame Contents **
(Listed by Sensor)
Sensor: Black & White
Scene: Student -Desk-Scene
Robot : George
Data Type: Image
Horz Size: 256 bits
Vert Size: 256 bits
Depth: 8 bits
Sensor: Infra-red
Scene: Student -Desk-Scene
Robot : George
Data Type: Image
Horz Size: 640 bits
Vert Size: 480 bits
Depth: 8 bits
Sensor: Ultrasonics
Scene: Student -Desk-Scene
Robot : George
Data_Type: Numeric
Horz Size: 0 bits
Vert Size: 0 bits
Depth:’ 0 bits
Figure 27: Output for the Data Frame

61

The knowledge base can be modified if additional

concepts or attributes are need. Any attribute that does
not link two concepts may be removed or added without

compromising the original design.

62

CHAPTER 5

SUMMARY AND CONCLUSIONS

Summary

This work has described the design of a knowledge base
that supports interactive exception handling for a
cooperative teleassistance. The major focus was to identify
and represent concepts specific to Rogers and Murphy's
cooperative teleassistant [Rogers and Murphy, 1993]. In
Chapter 2, a brief overview of Rogers and Murphy's
cooperative teleassistance system was given to lay the
foundation for the concepts that are represented in

teleVIA's knowledge base. An explanation was provided for

each component of the teleassistant as it relates to the
type of information that must be stored in the knowledge
base. In Chapter 3, the details of the teleVIA knowledge
base design were presented. The choice of frames as a
representation schema was explained, and the concepts
represented in this schema and their relationships were
defined. An explanation for each concept's attributes was
given and examples were given for navigating through the
knowledge base. Finally, the programs used to implement the
knowledge base were described. Examples of the type of data

63

that may fill each frame's slots was shown and sample output

for the knowledge base routines was given. Finally, an

evaluation of the knowledge base was made.

Future Work

Future work in Rogers and Murphy's cooperative
teleassistance will examine the use of a generic blackboard
based on an object-oriented design. Given this, it is
conceivable that knowledge base design presented here could
be converted to the generic blackboard platform. In doing
so, each frame could be represented as an object in the
object-oriented system. The concepts represented here and
objects, as defined in an object-oriented paradigm, [Cattel,
1991] are quite similar. Figure 28 shows the
characteristics of an object in an cbject oriented paradigm
compared to the concepts represented in the teleVIA
knowledge base. These similarities suggest that such a

conversion may be possible.

Conclusions
This work emphasizes the importance of building domain
knowledge into intelligent, cooperative systems.
Generally, domain knowledge is specific to a given
application; therefore, knowledge cannot be built in until
important facts and relationships within the domain are

defined and organized. Because of this work, the teleVIA

64

An Object ... A teleVIA Robot Frame ...

models real world entities represents a real world
entity

may have relationships is related to a sensor by
the 'has' relationship

may have behavior as well performs tasks and has a

as data name

has attributes may have a failure

may have procedural may have an attached

attachments enhancement procedure

Figure 28: Objects vs. Concepts

65

system now has a repository of organized information that it

can use to bring researchers one step closer to human and

intelligent robot cooperation.

" This appendix contains the C code for each frame
structure in the knowledge base. The code is contained in

the file named "zframes.h"

#ifndef ZFRAMES H
#define ZFRAMES H 1

/**************;**

Name : zframes.h

Date: April 26, 1994

Purpose: Templates for knowledge representation
frames

Comments: data frame, object frame, scene frame,
environment frame, sensor frame, robot frame,

**/

#include zkbase.h
#include zglobal.h

typedef struct test s {

int provided by;
struct scene *models;
int scene;
int data_type;
FILE *curr_raw_image;
FIIE *prev_raw_image;
FILE *curr_raw_numeric;
FILE *prev_raw_numeric;
int horz_size;
int vert size;
int depth;

} DATA FRAME

*DATA_P;

typedef struct {

int name;
int color;
int temperature;

} OBJECT FRAME;

67

typedef struct scene

int name;

int part of;

DATA FRAME *modeled by;

int 7 curr_object [NUM_OBJECTS + 1];

} SCENE FRAME
*SCENE_P;

typedef struct {

int name;

SCENE_FRAME has scene [NUM_SCENES + 1];
int curr_scene;

int assoc_task [NUM_TASKS + 1];
double width;

double height;

double length;

int light intensity;

double temperature;

OBJECT_FRAME object_list [NUM_OBJECTS + 1];
} ENVIRONMENT FRAME;
ENVIRONMENT FRAME environment list [NUM_ENVIRONMENTS + 1];

/***

A function pointer is used to call the enhancement functions.
**/
typedef struct func s {

int name;
char *function;

} ENHANCEMENT NODE;

typedef struct {
ENHANCEMENT NODE enhancement [MAX ENHANCEMENTS] ;

} E_NODE;

typedef struct{

int name;

int part_of;

int usage;

double horz_fov;

double vert_fov;

int data type;

DATA FRAME provides [NUM_SCENES + 1];
double curr_evidence [NUM_BELIEFS] ;
double prev_evidence [NUM_BELIEFS] ;
double second attempt evidence [NUM_BELIEFS] ;
E_NODE e_listTNUM_SENSORS + 1];

} SENSOR FRAME;

68

typedef struct {

int name;

int operates in;

int given_ task;

SENSOR_FRAME has_sénsor [NUM_SENSORS + 1];

int curr_sensors_status [NUM_SENSORS + 1];
int failure_type;

int second attempt_failure type;

} ROBOT_FRAME;
ROBOT_FRAME robot_list [NUM_ROBOTS + 1];

#endif

69

APPENDIX B

This appendix contains the possible slot values for the

frames in the knowledge base.

#ifndef ZKBASE H
#define ZKBASE H 1

/*************?**********************************

Name : kbase.h

Date: April 26, 1994

Purpose: Holds definition for all knowledge
base information

Comments: Environment, Scene, Robot, Sensors

**/

JFF*exdkks Environment #*kkkkkk/
/* Names */

#define NO ENVIRONMENT 0
#define NUM_ENVIRONMENTS 1

#idefine LAB 1
#define WAREHOUSE 2

/* Temperature */

#define NO_TEMPERATURE 0
#idefine BELOW AMBIENT 1
#define AMBIENT 2
#define ABOVE_AMBIENT 3
/* Light Intensity */

#define NO_INTENSITY 0
#idefine ON 1
#idefine OFF 2
#define DIM 3

/******* Scenes *******/

#define NO SCENE
#define NUM_SCENES

O

70

#define DRILL PRESS SCENE
#idefine VCR MONITOR SCENE
#idefine DOOR_SCENE

#define STUDENT DESK SCENE

B WM

/* Objects */

#idefine NO OBJECT
#define NUM OBJECTS

#idefine VCR

#define MONITOR

#define CABINET

#define DRILL, PRESS
#define DESK

#idefine CHAIR

#define DOOR

#define FIRE EXTINGUISHER

OoJombdwh e @O

/* Color */
#define NO_COLOR

#define BLACK
#define WHITE
#define RED
#idefine ORANGE
f#idefine YELIOW
#define GREEN
f#idefine BLUE
#define PURPLE
#define GREY

wWodhubkwh+H o

/******* Robot *******/
/* Names */

#define NO ROBOT 0
#define NUM_ROBOTS 2

#define CLEMENTINE 1
#define GEORGE 2
/* Task List */
#define NO TASK

#define NUM_ TASKS

#define SECURITY GUARD
#define MONITOR_TASK

e No

71

/******* Sensor *******/

/* Sensor Type */

#idefine NO SENSOR 0
#define NUM_SENSORS 5

#define NUM DATA 5

f#define BW 1

f#idefine COLOR 2

#idefine IR 3

f#idefine Us 4

f#idefine UV 5

/* Sensor Usage */

#define NO _USAGE 0
#define DETECT VISIBLE LIGHT 1
#define DETECT_RANGE 2
#define DETECT HEAT 3
#define DETECT ENVIRONMENTAL CHANGE 4

/* Data Type */

#define NO_DATA 0
f#idefine IMAGE 1
#idefine NUMERIC 2

/* Enhancement */

/***

There may be more than one enhancement associated with each
sensor. The maximum number of enhancements for each sensor is
given by MAX ENHANCEMENTS. This number is the maximum number
of enhancements that may be associated with each sensor.

***/

#define MAX ENHANCEMENTS 5

#define NO ENHANCEMENT 0
#define BW ENHANCE 1 /* BW */
#define COLOR ENHANCE 2 /* COLOR */
#define FALSE COLOR 3 /* IR */
#define OCCUPANCY GRID 4 [+ US */
#define POLAR PLOT 5

#define UV_ENHANCE 6 /% UV */

72

/****** Failure ******/

/* Types of State Failure

#define NO FAILURE
#define BELOW MIN
#define MISSING EVIDENCE

#define HIGH CONFLICT
#define HIGHLY UNCERTAIN

/* Beliefs */
#define NUM BELIEFS

#define SUPPORT

#define AGAINST
#define DONT_ KNOW

/* Constants */
#define NUM_TRANSDUCERS
#define DEFAULT NO PULSE

0

B WD

NP o w

#define DEFAULT NOT FIRING

#define DIST BTW TRANSDUCERS

/* Status Variables */
#define NOT AVAIL

#define ACTIVE
f#idefine INACTIVE
#define SUSPECT
#define TRUE
#define FALSE
#define YES

#define NO

#endif

*/

24

250
300
10

OoH wNhRr o

/*

73

US constants */

Appendix C

C code is for the INIT.C routine is included in this
appendix.

/***

Name : init.c
Date: March 23, 1994
Purpose: Irnitializes all the Televia frames
Comments: Object,Scene, Envirconment
Data, Sensor, Robot

************k***/

#include <stdio.h>

#include <string.h>
#include "zframes.h"
#include "zkbase.h"
#include "zglobal.h"

extern int i;
extern int j;
extern int k;

extern int prn frame; /* selects frame to prn */

/***

*

* Initializes the contents of the robot frame

*
**/

init_robot_frame () {
for(i = NO RCBOT; i <= NUM_RCBOTS; i++) {
robot list[i].name = NC ROBOT;
robot list [i] .operates_In = NO_ENVIRONMENT;
robot list{i] .given_task = NC TASK;
robot_list [i] .failure type = NO_FAILURE;
robot_list[i] .second attempt failure type = NO_FAILURE;
for(j = NO_SENSOR; j <= NUM_SENSORS; j++) {

robot_list [i] .curr_sensors_status[j] = NOT AVAIL;

1 /* End Init_Robot Frame */

/***
* %*
] [(] M
* Initializes the contents of the sensor frame *
* *
**/

init_sensor_frame () {
for(i = NO ROBOT; i <= NUM ROBOTS; i++){
for(j = NO SENSOR; j <= NUM_SENSORS; j++) {

‘robot_list[i].has sensor[j] .name = NO_SENSOR;
robot list [i] .has_sensor(j] .part_of = NO_ROBOT;

robot_list[i] .has sensor[j] .usage = NO_USAGE;
robot_list [i] .has_sensor [j] .horz_fov = 0;
robot_list [i] .has_sensor[]] .vert_fov = 0;
robot_list [i] .has sensor[j] .data_type = NO_DATA;

/* Beliefs */

robot_list[i] .has sensor[j] .curr_evidence [SUPPORT] = 0.00;
robot_list [i]} .has_sensor[j] .curr_evidence [AGAINST] = 0.00;
robot_list [i] .has_sensor[j] .curr_evidence [DONT KNOW] = 0.00;
robot_1list [i] .has sensor[j] .prev_evidence [SUPPORT] = 0.00;
robot_list [i] .has_sensor [j] .prev_evidence [AGAINST] = 0.00;
robot_list [i] .has_sensor [j] .prev_evidence [DONT KNOW] = 0.00;

robot_list [i] .has sensor(j] .second attempt evidence [SUPPORT]
robot_list [i] .has_sensor[]j] .second_attempt evidence [AGAINST]
robot_list [i] .has_sensor[j] .second_attempt_evidence [DONT KNOW]

for(k = NO_ENHANCEMENT; k <= MAX ENHANCEMENTS; k++) {

robot list[i] .has sensor[j].e_list[j] .enhancement {k] .name

NO_ENHANCEMENT ;

robot list[i] .has sensor([j].e_list[j] .enhancement (k] .function

NIL FUNCTION;

/* k*/
) i)
bo/x 3/
b End Init Sensor Frame() */

/***

* *
* Initializes the contents of the Data Frame *
* *

***/

init_data frame() {

75

00;
.00;
00;

for(i

for(j

for(k =

robot list[i]
robot list [i]
robot_list [1]
robot_list [i]
robot list [i]
robot list [i]
robot list[i]
robot list [1]
robot_list [i]
robot_list [i]

= NO_ROBOT; i <= NUM_ROBOTS;

.has sensor(j]
.has”sensor [j]
.has sensor[j]
.has_sensor [j]
.has” sensor [j]
.has”sensor[j]
.has”sensor [j]
.has sensor 7]
.has_sensor[j]
.has_sensor [j]

.provides [k]
.provides [k]
.provides [K]
.provides [k]
.provides [k]
.provides (k]

i++) {

= NO_SENSOR; j <= NUM SENSORS; j++){

NO_SCENE; k <= NUM_SCENES; k++){

.provides [K] .
.provides [k] .

.provides [k]
.provides [k]

.provided by =
.models = NIL SCENE;
.scene= NO SCENE;

.data type
.horz _Slze
.vert size

NO SENSOR;

NO DAIA;
0;
0;

_firing = 0;

.default no pulse = 0;
.distance_btw data_p01nts—

/**

Initializes the contents of the Environment Frame

Purpose:

* ok * ¥ %

hkdddrddkhdhhohbdhkhkhhhdkdkdhhhdhd ko hdkkkhhdddkhkdhhde ki dkhk sk hkkk ke hrdrdkk ke dokk

/

init environment_frame () {

for (i = NO_ENVIRONMENT; i <= NUM_ENVIRONMENTS; i++) {
environment list[i] .name = NO_ENVIRONMENT;
environment list[i].curr scene = NO_SCENE;
environment list[i] .width = 0;
environment list[i] .height = 0;
environment list[i].length = 0;

environment list [i]

.light 1ntens1ty NO INTENSITY;
environment list [i]

.temperature = NO_TEMPERATURE;

NUM_TASKS ; j++) {
=NOTAS

for (j = NO_TASK; j <=

environment llst[1] .assocC_task[j]

/***
*

* Purpose: Initializes the contents of the Percept Frame
*
***/

init scene frame () {
for (i = NO_ENVIRONMENT; i <= NUM_ENVIRONMENTS; i++) {
for (j = NO SCENE; j <= NUM_SCENES; j++) {

environment_list [i] .has_scene[j] .name = NO SCENE;
environment list [i] .has_scene[j] .part_of = NO_ENVIRONMENT;

environment list [i] .has scene[j] .modeled by = NIL DATA;

for (k = NO_OBJECT; k<= NUM_OBJECTS; k++)
environment list [i] .has_scene[j] .curr_object [k] = FALSE;

/***
*

* Purpose: Initializes the contents of the Cbject Frame
%
*****?***/

init_object_frame () {
for (i = NO _ENVIRONMENT; i <= NUM_ENVIRONMENTS + 1; i++) {
for (j = NO SCENE; j <= NUM SCENES + 1; j++){
for (k = NO OBJECT; k <= NUM OBJECTS + 1; k++) {
environment list[i].object_list [k] .name = NO_OBJECT;

environment list[i].object_list [k] .color = NO_COLOR;
environment list [i] .object list [k] .temperature = NO_TEMPERATURE;

}

77

APPENDIX D

This appendix contains code for the data.c routine.

/***
Name : data.c

Date: April 26, 1994
Purpose: Instantiates all the Knowledge Base Frames
Comments : Robot, Sensor, Data,

Environment, Percept,

**/

#include <stdio.h>

#include <string.hs>
#include "zframes.h"
#include "zkbase.h"
#include “zglcbal.h"

extern intei;
extern int j;
extern int k;

extern int prn frame; /* selects frame to prn */

/***
*

Instantiates the Robot Frame

The following function, instantiates the robot frame
for Clementine and George.

* & * * *

**/

put robot data() {

int x;

/* Clementine's Data */

robot_list [CLEMENTINE] .name = CLEMENTINE;
robot_list [CLEMENTINE] .operates in = LAB;
robot_list [CLEMENTINE] .given_ task = SECURITY_ GUARD;

robot list [CLEMENTINE] .curr_sensors_status [BW] = ACTIVE;
robot_list [CLEMENTINE] .curr_sensors_status [COLOR] = ACTIVE;
robot_ list [CLEMENTINE] .curr_sensors_status [IR] = NOT AVAIL;
robot_list [CLEMENTINE] .curr_sensors_status [US] = ACTIVE;
robot_list [CLEMENTINE] .curr_sensors_status [UV] = NOT_AVAIL;

78

/* George's Data */

}

robot list [GEORGE] .name

robot list [GEORGE] . operates
robot_list [GEORGE] .given

task

robot list [GEORGE] .curr_sensors_status [BW]
robot_list [GEORGE] .curr_sensors_status [COLOR]
robot”_list [GEORGE] .curr_sensors_status [IR]
robot” list [GEORGE] .curr_sensors_status [US]
robot_list [GEORGE] .curr_sensors_status [UV]

GEORGE;
in

LAB;
SECURITY_GUARD;

ACTIVE;
ACTIVE;
ACTIVE;
ACTIVE;
ACTIVE;

e n

/**

*
*
*

Instantiate the Sensor frame

**/

put_sensor data() {

.-

j

/***

CLEMENTINE;
BW;

robot list[i]
robot_list [i]

robot list[i]
robot list [i]
robot list [i]
robot_list [i]

= COLOR;

robot list[i]
robot_list [i]

robot list [i]
robot list [i]
robot list[il]

robot_list [i]

Us;

robot list [i]
robot_list [i]

robot list[i]
robot list [i]
robot list[il]
robot_list [i]

.has_sensor [j]
.has”_sensor [j]

.has sensor[j]
.has_sensor [J]
.has”sensor [j]
.has sensor [j]

.has sensor [j]
.has” sensor [j]

.has_sensor [j]
.has_sensor[j]
.has_sensor [j]
.has_sensor [j]

.has_sensor []j]
.has sensor [j]

.has sensor []]
.has_sensor(j]
.has_sensor(j]
.has_sensor (j]

.usage =
.horz_fov = 46.%;
.vert_fov =
.data_type =

.part_of
.name = US;

.usage =
.horz fov = 0;
.vert fov = 0;
.data_type = NUMERIC;

.part_ of CLEMENTINE;

.name = BW;

.usage = DETECT VISIBLE LIGHT;
.horz fov = 23.5;

.vert_fov = 25.0;

.data_type = IMAGE;

.part_of = CLEMENTINE;
Jame =

COLOR;
DETECT VISIBLE LIGHT;

40.0;
IMAGE;

= CLEMENTINE;

DETECT RANGE;

79

BW Enhancement :
Insert the enhancement function(s) for BW in enhancement list.

bw_enhance ()} is a dummy funciton - it is a place holder for a
real black and white enhancement function.

***/
/* Input the enhancement for availible each sensor */

robot list [CLEMENTINE] .has sensor [BW] .e_list [BW] .enhancement [1] .name

i} BW_ENHANCE;

robot list [CLEMENTINE] .has sensor [BW] .e_list [BW] .enhancement [1] .function =
(char*) bw enhance () ;

/***

COLOR Enhancement :
Insert the enhancement function(s) for COLOR in enhancement list.

color enhance() is a dummy funciton - it is a place holder for a
real black and white enhancement function.

***/

robot_list [CLEMENTINE] .has_sensor [COLOR] .e_list [COLOR] .enhancement (1] .name
) COLOR_ENHANCE;
robot list [CLEMENTINE] .has sensor [COLOR] .e_list [COLOR] .enhancement [1] . funct

ion =
(char*) color_enhance() ;

/***
US Enhancement :
Insert the enhancement function(s) for US in enhancement list.
There are two enhancements for the ultrasonice camera. They are a
and occupancy grid and polar plot. The occupancy grid presents a

bird's eye view of what the robot has sensed. The polar plot is a
graphical representation of the US readings.

***/

robot_list [CLEMENTINE] .has_sensor [US] .e_list [US] .enhancement [1] .name
" OCCUPANCY_GRID;

robot_1ist [CLEMENTINE] .has_sensor (US] .e_list [US] .enhancement [1] .function =
(char*) occupancy grid();

robot_1list [CLEMENTINE] . has_sensor [US] .e_list [US] .enhancement [2] .name
POLAR PLOT;
robot_list [CLEMENTINE] .has sensor [US] .e_list [US] .enhancement [2] .function

80

GEORGE;
BW;

-

(char*) polar plot();

robot_list [i]
robot_list [i]

robot_list [i]
robot_list [i]
robot list [i]
robot_list[i]

COLOR;

robot list [i]
robot_list [i]

robot list [i]
robot list [i]
robot list [i]
robot_list [i]

IR;

robot list [i]

- robot_list [i]

robot list [i]
robot list [i]
robot list [i]
Zrobot_list [i]

Us;

robot list [i]
robot_list[i]

robot list [i]
robot_list [i]
robot_list [i]
robot_list [1]

uv;

robot list [i]
robot_list [i]

robot_list [i]
robot_list [1]
robot list [i]
robot_list [i]

.has_sensor [j]
.has”sensor [j]

.has _sensor [j]
.has sensor []]
.has sensor [j]
.has_sensor [J]

.has sensor[j]
.has”sensor [j]

.has sensor{j]
.has”_sensor [j]
.has_sensor [j)
.hassensor [j]

.has sensor [j]
.has_sensor [j]

.has_sensor {j]
.has sensor[j]
.has_sensor (7]
.has_sensor []j]

.has sensor [j]
.has”_sensor [j]

.has sensor [j]
.has_sensor [j]
.has”_sensor{]j]
.has sensor [j]

.has sensor [j]
.has sensor [j] .

.has_sensor [j]
.has sensor[]]
.has sensor[]]
.has sensor [j]

.usage =
.horz_fov = 23.5;
.vert_fov =
.data_type =

.usage
.horz_fov = 46.4;
.vert_fov =
.data_type =

.usage = ']
.horz fov = 24;
.vert fov = 24;
.data_type =

.usage =
.horz fov = 0;
.vert fov = 0-
.data_type = NUMERIC;

.part of = GECRGE;
.name = BW;

DETECT VISIBLE LIGHT;

25.0;
IMAGE;

.part_of = GEORGE;
.name =

COLOR;
= DETECT VISIBLE LIGHT;

40.0;
IMAGE;

.part_of = GEORGE;
.name = IR;

DETECT HEAT;

IMAGE;

.part_ of = GEORGE;
.name = US;

DETECT RANGE;

.part_of = GEORGE;

name = UV;

.usage = DETECT ENVIRONMENTAL CHANGE;
.horz_fov = 40.0;

.vert_fov = 40.0;

.data_type = IMAGE;

/***

81

BW Enhancement :
Insert the enhancement function(s) for BW in enhancement list.

bw_enhance () is a dummy funciton - it is a place holder for a
real black and white enhancement function.

***/

robot _list [GEORGE] .has_sensor [BW] .e_list [BW] .enhancement [1] .name =
BW_ENHANCE;

rcbot_list [GEORGE] .has_sensor [BW] .e_list [BW] .enhancement [1] .function =
(char*) bw_enhance () ;

/***

COLOR enhancements:
Insert the enhancement function for COLOR images

in enhancement list. This function is a dummy function - It is
a place holder for a real function.

***/

robot_list [GEORGE] .has_sensor [COLOR] .e_list [COLOR] .enhancement [1] .name
B COLOR ENHANCE;

robot_list [GEORGE] .has sensor [COLOR] .e_list [COLOR] .enhancement [1] . function
(char*) color_enhance() ;

/***

IR enhancements:

Insert the enhancement function for IR images
in enhancement list.

***/

.robot_list [GEORGE] .has_sensor [IR] .e_list [IR] .enhancement [1] .name
FALSE COLOR;

robot_list [GEORGE] .has sensor [IR] .e_list [IR] .enhancement [1] .function
(char*) false color();

/**

US enhancements:

Insert the enhancement function for
US data in enhancement list

82

**/

robot_list [GEORGE] .has_sensor [US] .e_list [US] .enhancement [1] .name
OCCUPANCY GRID;

robot_list [GEORGE] .has sensor [US] .e_list [US] .enhancement [1] . function
(char*) occupancy grid();

robot_list [GEORGE] .has_sensor [US] .e_list [US] .enhancement [2] .name
POLAR PLOT;
robot_list [GEORGE] .has_sensor [US] .e_list [US] .enhancement [2] .function
(char*) polar plot();
[tk kb ok ok ok ok koo ok ok ok ok ok ok ok
ULTRAVIOLET enhancements:
Insert the enhancement function for

ULTRAVIOLET data in enhancement list. This is a dummy function -
It is a place holder for a real function

**/

robot_list [GEORGE] .has sensor [UV] .e_list [UV] .enhancement [1] .name
UV_ENHANCE;

robot_list [GEORGE] .has_sensor [UV] .e_list [UV] .enhancement [1] .function
(char*) uv_enhance() ;

}

/* End put_sensor data() */
/***
* *

* Instantiates the Data Frame *

* *

***/

put_data() {

i = CLEMENTINE;

j = BW;

k = DRILL PRESS_SCENE;

robot_list [i] .has_sensor[j]} .provides [k] .provided by = BW;
robot list[i] .has_sensor(j] .provides[k] .scene = DRILL PRESS SCENE;

robot_list [i] .has_sensor[]] .provides[k] .data type = IMAGE;
robot_list[i] .has sensor[j] .provides[k] .horz_size = 256;
robot_list [i] .has_sensor[j] .provides [k] .vert_size = 256;

83

-

.

A

.

U

robot_list [i]

COLOR;

DRILL, PRESS_SCENE;

Us;
DRILL PRESS_SCENE;

robot list [i]

robot_list[i]
robot list [i]
robot list [i]
robot list [i]
robot_list [i]

robot list [i]

robot list[i]
robot_list [i]
robot_list [i]
robot”list [i]
robot_list [i]

GEORGE;

BW;
DRILL, PRESS SCENE;

robot 1list[i]

robot list[i]
robot list [i]
robot list [i]
robot list [i]
robot_list [i]

COIOR;

IR;
DRILL, PRESS SCENE;

DRILL _PRESS SCENE;

robot_list [i]

robot list[i]
robot list [i]
robot_list [i]
robot list[i]
robot _list [i]

robot list[i]
robot list [i]
robot list [i]
robot list [i]
robot” list [i]
robot_list [i]

.has sensor [j]

.has_sensor [j]

.has_sensor [j]
.has_sensor (7]
.has sensor [j]
.has_sensor [j]
.has_sensor [j]

.has_sensor [j]

.has_sensor [j]
.has”_sensor [j]
.has sensor [j]
.has sensor (3]
.has_sensor [j]

.has sensor[j]

.has sensor [j]
.has”_sensor{j]
.has_sensor [j]
.has”_sensor [j]
.has”_sensor [J]

.has_sensor[j]

.has sensor[j]
.has_sensor [j]
.has”_sensor [j]
.has_sensor[j]
.has_sensor []]

.has_sensor [j]
.has”sensor [j]
.has”_sensor [j]
.has_sensor[j]
.has_sensor [j]
.has_sensor(j]

.provides [k]

.provides [k]

.provides [k]
.provides [k]
.provides [k]
.provides [k]
.provides (k]

.provides [k]

.provides [K] .
.provides [k]
.provides [k]
.provides [k]
.provides [k]

.provides (k]

.provides (k]
.provides [k]
.provides [k]
.provides [K]
.provides [Kk]

.provides [k]

.provides [k]
.provides [k]
.provides [k]
.provides [k]
.provides [k]

.provides [k]
.provides [k]
.provides [k]
.provides [k]
.provides [k]
.provides [k]

84

.depth =

.provided by = COLOR;
.scene = DRILL PRESS SCENE;
.data type = IMAGE;

.horz_ s1ze = 640;

.vert size = 480;

.depth =

.provided by = US;

scene = DRILL PRESS SCENE;

.data t = NUMERIC;
.horz_size = 0;

.vert size = 0;

.depth = 0;

.provided by =

.scene = DRILL PRESS SCENE;
.data type = IMAGE;

.horz size = 640;

.vert | s1ze = 480;

.depth =

.provided by = COLOR;
.scene = DRILL PRESS SCENE;
.data type = IMAGE;
.horz_size = 640;

.vert size = 480;

.depth = 8;

.prov1ded by = IR;

.scene DRILL PRESS SCENE;
.data type = 1;

.horz_size = 478;

.vert size = 397;

.depth =

*
*
*
*
*

put_environment data () {

LAR;

j =1Us;

k = DRILL PRESS SCENE;
robot _list[i] .has sensor[j] .provides [k] .provided by = US;
robot_list [i] .has sensor[j].provides [k] .scene = DRILL PRESS SCENE;
robot_list [i] .has_sensor[j] .provides [k] .data type = NUMERIC;
robot_list [i] .has sensor [j] .provides [k] .horz_size = 0;
robot_list [i] .has sensor [j] .provides [k] .vert 51ze = 0;
robot_list [i] .has sensor[j] .provides [k] .depth =

j =uv;

k = DRILL PRESS SCENE;
robot_list[i] .has_sensor[j] .provides [k] .provided by = UV;
robot_list [i] .has sensor(j] .provides [k] .scene = DRILL PRESS_SCENE'
robot_list [i] .has sensor [j] .provides [k] .data_t = IMAGE;
robot_list [i] .has_sensor[j] .provides [k] .horz_size = 40.0;
robot_list [i] .has”sensor []] .provides [k] .vert s1ze = 60.0;
robot_list [i] .has sensor[j] .provides[k] .depth =

/**/

/**

Purpose: Instantiates the the Environment Frame

***/

environment list [i]

environment list[i]
environment list[i]
environment list [i]
environment_list [i]
environment list [i]
environment list [i]

*

name =

.width =
.height =
.length =
.light 1nten51ty = ON;
.temperature =
.Curr_scene = DRILL_PRESS_SCENE;

environment list [i] .assoc_task [SECURITY GUARD] =
environment list [i] .assoc_task [MONITOR_TASK]

68.5;

TRUE;
= TRUE;

/***

85

*

put_scene data() {

)

*

*

put_cbject_data() {
i = LAB;

=
]

DRILI, PRESS;

environment list [i] .object list [k]
environment_list [i] .object list [k]
environment_list [i] .object_list [k]

k = VCR;

environment list [i] .object_list [k]
environment_list [i] .object”list [k]
environment_list [i] .object” list (k]

MONITOR;

86

* Purpose: Instantiates the Scene Frame

***/

i = LAB;

j = DRILL PRESS SCENE;
environment list[i] .has scene[j] .name = DRILL PRESS_ SCENE;
environment list [i] .has_scene[j] .part of = LAB;

i = LAB;

j = DOOR_SCENE;
environment list[i].has scene[j] .name = DOOR_SCENE;
environment list [i] .has_scene[]] .part_of = LAB;

i = LAB;

j = VCR MONITOR SCENE;
environment list[i] .has scene[j] .name = VCR MONITOR SCENE;
environment_list [i] .has_scene[]j] .part_of = LAB;

i = LAB;

j = STUDENT DESK SCENE;

environment list[i] .has scene[j] .name = STUDENT DESK SCENE;
environment list [i] .has scene[]] .part_of = LAB;™

/***

* Purpose: Instantiates the Object Frame

***/

.name = DRILL PRESS;
.color = GREY;
.temperature = ABOVE_AMBIENT;

.name = VCR;
.color = BLACK;
.temperature = AMBIENT;

environment list [i]
environment list [i]
environment_list [i]

=
]

CABINET;
environment list [i]
environment list [i]
environment list [i]

=
]

DOOR;

environment list [i]
environment list [1i]
environment list [i]

P
1

FIRE EXTINGUISHER;

environment list [i]
environment list [i]
environment list [i]

=
[]

DESK;

environment list [i]
environment list [i]
environment list [i]

o=
1l

CHAIR;

environment list [i]
environment list {i]
environment list [i]

.object_list [k] .name =
.object list [k] .color =

.object_list [k] .name = MONITOR;
.object list [k] . color = GREY;

.object 1list [k] .temperature = AMBIENT;
.object list [k] .name = CABINET;
.object_list [k] .color = BLUE;
.object_list [k] .temperature = AMBIENT;
.object_list [k] .name = DOOR;

.object_. ~“list [k] color = BLACK;
.object_list [k] .temperature = AMBIENT;

FIRE EXTINGUISHER;
RED;

.object list [k] .temperature = AMBIENT;
.object_list [k] .name = DESK;

.object list [k] . color = BLUE;
.object_list [k] .temperature = AMBIENT;
.object_list [k] .name = CHAIR;
.object_list [k] .color = YELLOW;
.object_list [k] .temperature = AMBIENT;

/**

NOT USED

The following two Link(*) functions, provides the connection

between the scene and data frames.
contains data for some scene, a link is made via "models" pointer.
For every scenes frame, that has some data, a link is made via the

"modeled by" pointer.

***/

link data with scene() {

int scene index;
int envir —index;

/* Init varaibles */

envir_index = LAB;

Every data frame that

87

<= NUM SENSORS; j++) |
NUM SCENES; k++) {

/* Find the scene index */

scene_index = robot_list [i] .has_sensor[j] .provides [k] .scene;

/* If scene_index = 0 then do not link data and scene frames */
if (scene_index != 0) {
/* Link data and scene frame */

robot_list[i] .has sensor[]j] .provides[k] .models =
& (environment list[envir index] .has _scene [scene_index]) ;

} /* for i */
} /% for J */
}/* for k */
} /* End Link_ data_with Percept () */
J % v & e Je de e e vk dke ok Ak sk Ik ok e e sk e vk gk ok % sk o e T sk ke db ok % e ke ok 9k de ok ke ok e o 3k Ik A ok ok ok ok ok ok ok ok sk e e ok
/ /

link scene with data() {

int scene index;
int envir 1ndex,

/* Init varaibles */

envir_index = LAB;

for (i = 1; i <= NUM ROBOTS; i++) {
for (j = 1; j <= NUM_SENSORS; j++)
for (k = 1; k<= NUM SCENES; k++) {

scene_index = robot_list [i] .has sensor([j].provides (k] .scene;
/* If scene_index = 0 then do not link scene with data frame */
if (scene_index != 0) {

environment list[envir index] .has scene [scene index] modeled | by =
& (robot_list[i] .has sensor([j] .provides [scene_index])

88

APPENDIX E

This appendix contains code for the update.c routine.

/***

Name: update.c

Date: March 30, 1994

Purpose: Updates knowledge base when there is an a repaired
or replaced plan or when failure occurs.

Comments : get_new sensors(), get_new scene(), get_failure()

_— — v
update objects(), scenariof()
***/

#include <«stdio.h>

#include <string.h>
#include "zframes.h"
#include "zkbase.h"
#include "zglcobal.h"

/**

The procedure ensures that the correct objects are
listed in the current object list whenever the current scene changes.
**/
update_object (i, scene)
int i, scene;

if (scene == 1)
environment list [i] .has scene[scene] .curr object[1] = FALSE;
environment_list [i] .has scene[scene] .curr_object [2] = FALSE;
environment_list [i] .has_scene [scene] .curr_cobject [3] = FALSE;
environment_list [i] .has scene[scene] .curr_object [4] = TRUE;
environment list [i] .has scene [scene] .curr_object [5] = FALSE;
environment_list [i]) .has”scene [scene] .curr_object [6] = FALSE;
environment_list [i] .has scene[scene] .curr_object [7] = FALSE;
environment_list [i] .has scene [scene] .curr_cbject [8] = FALSE;

} .

if (scene == 2) {
environment list [i] .has_scene [scene] .curr_object [1] = TRUE;
environment_list [i] .has_scene [scene] .curr_object [2] = TRUE;
environment list [i] .has_scene [scene] .curr_object [3] = FALSE;

89

(scene ==

environment list [i]
environment list [i]
environment list [i]
environment list [i]
environment_list [i]

) {

environment list [i]
environment_list [i]
environment_list [i]
environment list [i]
environment list [i]
environment list [i]
environment list [i]

environment list[i].

if (scene == 4) {

environment list [i]
environment list [i]

environment list [i].
.has scene [scene]
.has scene [scene]
.has scene [scene]
.has scene[scene]
environment list [i].

environment list [i]
environment list [i]
environment list [i]
environment list [i]

} /* End Update Object */

/*************

Examples of failure

.has scene[scene] .
.has scene [scene]
.has scene [scene]
.has scene [scene]
.has_scene [scenel

.has scene [scene]
.has scene [scene]
.has scene [scene]
.has scene [scene]
.has scene [scene]
.has scene [scene]
.has scene [scene]

has” scene [scene]

.has scene [scene]
.has scene [scene]

has scene [scene]

has™ scene [scene]

curr_ocbject [4]
.curr_ocbject [5]
.curr_object [6]
.curr_cbject [7]
.curr_object [8]

.curr obj
.curr ob'
.curr ob‘
.curr ob'
.curr_obj
.curr_ob]
.curr_ob]
.curr_obj]

.Curr obj
.curr_abj
.curxr ob'
.curr ob'
.cury ob“
.curr ob-
.curr ob-

ect [1]
ect [2]
ect [3]
ect [4]
ect [5]
ect [6]
ect [7]
ect (8]

ect [1]
ect (2]
ect [3]
ect [4]
ect [5]
ect [6]
ect [7)]

.Curr_ ob“

**********/

scenariol ()
int robot, j, k;

robot = GEORGE;

/* Simulating the retreival of activation conditions
in place prior to the failure */

/* Type of failure */

robot list [robot] .failure type = HIGH CONFLICT;

90

W nnuan

ect [8]

/**

Collected data while facing the wrong part of the room.

***/

robot list [robot] .curr sensors status [BW] = SUSPECT;
robot list [robot] .curr sensors status [COLOR] = INACTIVE;
robot_list [robot] .curr_sensors_status[IR] = SUSPECT;
robot_list [robot] .curr”sensors_status [US] = ACTIVE;
robot_list [robot] .curr_sensors_status [UV] = INACTIVE;

FALSE;
FALSE;
FALSE;
FALSE;
FALSE;

FALSE;
FALSE;
FALSE;
FALSE;
FALSE;
FALSE;
TRUE;

TRUE;

FALSE;
FALSE;
TRUE;
FALSE-
TRUE;
TRUE;
FALSE;
FALSE;

robot list [robot]
robot list [robot]
robot_list [robot]

robot_list [robot]
robot_list [robot]
robot_list [robot]

robot list [robot]
robot list [robot]
robot_list [robot]

.has sensor [BW] .
.has sensor [BW] .
.has sensor [BW] .

.has sensor [IR] .
.has sensor [IR] .
.has sensor[IR].

.has sensor[US].
.has sensor [US]
.has_sensor [US] .

/* Beliefs obtained upon failure */

curr evidence [SUPPORT]
curr evidence [AGAINST]
curr_evidence [DONT_KNOW]

curr evidence [SUPPORT]
curr evidence [AGAINST]
curr_evidence [DONT_KNOW]

curr evidence [SUPPORT]
.curr evidence [AGAINST]
curr_evidence [DONT KNOW]

nwn wonon
OO0 OO0 Oro

/***

Simulated a sensor malfunction by taking plastic over the

lens of the BW camera.

In this scenario, the initial sensing

plan is replaced with a backup plan which includes the color

sensor in.

**/

scenario2 () {

int j;

int robot

= GEORGE;

backup plan */

robot _1list [robot]
robot_list [robot]
robot_list [robot] .
robot_list [robot] .
robot_list [robot] .

.curr_sensors_status [BW]

.curr_sensors_status [COLOR]

curr_sensors_status [IR]
curr sensors status [US]
curr_sensors_status [UV]

/* Type of failure */

robot_list [robot] .failure type =

robot_list [robot] .second attempt failure type

/* Beliefs */

robot_list [robot]
robot_list [robot]
robot_list [robot]

robot list [robot]
robot list [robot]
robot_list [robot]

robot_list [robot]
robot_list [robot]

.has sensor [BW]
.has sensor [BW]
.has_sensor [BW]

.has sensor[IR]
.has sensor[IR].
.has sensor [IR].

.has_sensor [US]
.has sensor [US] .

BELOW MIN;

.curr evidence [SUPPCORT]
.curr evidence [AGAINST]
.curr_evidence [DONT_KNOW]

.curr evidence [SUPPORT]
curr evidence [AGAINST]
curr_evidence [DONT_KNOW]

.curr evidence [SUPPORT]
curr_evidence [AGAINST]

91

/* Simulating the retreival of activation conditions for the

SUSPECT;
= SUSPECT;
ACTIVE;
ACTIVE;

INACTIVE;

HIGH CONFLICT;

OO oo O OO

.00;
.00;
.00;

.50;
.00;
.50;

.24;
.01;
.75;

robot_list [robot] .has sensor [US] .curr_evidence [DONT _KNOW] = 0.75;

/* SECOND ATTEMPT EVIDENCE */

robot_list [robot] .has sensor [BW] .second _attempt_evidence [SUPPORT] =0.44;
robot_list [robot] .has_sensor [BW] .second_attempt_evidence [AGAINST] =0.56;

robot list [robot] .has sensor [BW] .second attempt_evidence [DONT_KNOW]=0.00;

robot_list [robot] .has_sensor [COLOR] .second attempt_evidence [SUPPORT] =0.68;
robot_list [robot] .has_sensor [COLOR] .second_attempt_evidence [AGAINST]
=0.32;

robot_list [robot] .has_sensor [COLOR] .second_attempt_evidence [DONT_KNOW]
=0.00;

robot_list [robot] .has_sensor [IR] .second attempt evidence [SUPPORT] =0.50;
robot_list [robot] .has_sensor [IR] .second attempt_evidence [AGAINST] =0.00;
robot_list [robot] .has_sensor [IR] .second_attempt_evidence [DONT_KNOW] = 0.50;

robot_list [robot] .has_sensor [US] .second attempt_evidence [SUPPORT] = 0.25;
robot_list [robot] .has” sensor [US] .second_attempt_evidence [AGAINST] = 0.00;
robot” list [robot] .has_sensor [US] .second_attempt_evidence [DONT _KNOW] = 0.75;

}

/***

Lights were turned out to simulate an environmental chnage.

**/

scenario3 () ({

int j;

int robot GEORGE;

/* Simulating the retreival of activation conditions in place

prior to the failure */

robot_list [robot] .curr_sensors_status [BW] ACTIVE;
robot list [robot] .curr sensors status [COLOR] = INACTIVE;

robot_list [robot] .curr_sensors_status [IR] = ACTIVE;
robot_list [robot] .curr_sensors_status [US] = ACTIVE;
robot_list [robot] .curr_sensors_status [UV] = SUSPECT;

/* Type of failure */
robot_list [robot] .failure type = MISSING EVIDENCE;

/* Beliefs */

robot_list [robot] .has_sensor [BW] .curr_evidence [SUPPORT] = 0.00;
robot_list [robot] .has_sensor [BW] .curr_evidence [AGAINST] = 0.00;
robot”_list [robot] .has_sensor [BW] .curr_evidence [DONT_KNOW] = 1.00;
robot list [robot] .has_sensor [IR] .curr_evidence [SUPPORT) = 0.50;

92

robot list [robot] .has_sensor [IR] .curr_evidence [AGAINST] = 0.00;
robot_list [robot] .has”sensor [IR] .curr_evidence [DONT_KNOW] = 0.50;
robot_1list [robot] .has sensor [US] .curr_evidence [SUPPORT] = 0.24;
robot”list [robot] .has” sensor [US] .curr_evidence [AGAINST] = 0.01;
robot_list [robot] .has”sensor [US] .curr_evidence [DONT_KNOW] = 0.75;

J

/***

US causing problem. One transducer giving spurious
readings.

***/
scenariod () {

int j;

int robot = CLEMENTINE;

/* Simulating the retreival of activation conditions in place prior to
the failure */

robot_list [robot] .curr_sensors status [BW] ACTIVE;
robot”list [robot] .curr_sensors_status [COLOR] = ACTIVE;

robot_list [robot] .curr_sensors_status [IR] = NOT AVAIL;
robot_list [robot] .curr_sensors_status [US] = SUSPECT;
robot_list [robot] . curr_sensors_status [UV] = NOT AVAIL;

/* Type of failure */
robot list [robot] .failure type = HIGHLY UNCERTAIN;

}

/***

Choict of enhancement is based on knowledge about the sensor.

***/

scenarioS () {
int j;
int robot = GEORGE;

/* Slmulatlng the retreival of activation conditions in place
prior to the failure */

robot list [robot] .curr_sensors_status [BW] ACTIVE;
robot_list [rcbot] .curr_sensors_status [COLOR] = INACTIVE;

robot” list [robot] .curr_sensors_status [IR] = SUSPECT;
robot list [robot] .curr sensors status [US] = ACTIVE;
robot 1list [robot] .curr_sensors_status [UV] = INACTIVE;

/* Type of Failure */

93

robot_list [robot] .failure type = HIGHLY UNCERTAIN;

94

APPENDIX F

This appendix contains code for the print.c routine.

/**

Name : print.c

Date: April 9, 1994

Purpose: Prints instances of the knowledge base frames
Comments: Menus and print functions

**/

#include <stdio.h>

#include <string.h>
#include "zframes.h"
#include "zkbase.h"
#include "zglcbal.h"

int scene;

int robot; /* selects the current robot frames */
int i; /* loop counters */

int j;

int k;

int 1;

int prn_frame; /* selects frame to prm */

int scenario; /* selects failure */

int display current robots; /* sets display flags */

int display current_sensors;

int display current data;

int display current_environment;
int display current scenes;

int display current_objects;

/***************************************
*

* Name: choose frame

* se: Belects a frame to print
* PreCond: None

*

**/

choose frame() {

prn_frame = 0; /* Initialize the print variables
*

95

while (prn frame > 9 || prn_frame < 1) {

display current_ robots = FALSE; /* initialize display
flags */
display_current_ sensors = FALSE;
display current_data = FALSE;
display current environment = FALSE;
display_current_ scenes = FALSE;
printf ("\n\n#*kr** Choose a Frame to Print **xx*\n\n") ;

printf (" 1 - Environment\n");
printf (" 2 - Scene\n\n");

printf ("*** Clementine ***\n");
printf (" 3 - Robot\n");
printf (" 4 - Sensor\n'");
printf (" 5 - Data\n\n");
printf ("*** George ***\n");
printf (" 6 - Robot\n");
printf (" 7 - Sensor\n");
printf (" 8 - Data\n\n");
printf(" 9 - None (Quit)\n");
printf ("\n Select a number corresponding ");
printf ("to the frame you want to print: => ");
scanf ("%d", &prn_frame) ;
} /* while */
if (prm_frame == 9) exit(1);

} /* End Choose Frame */

/***

Simulates failure in the teleSFX system for the 5
scenarios given in the paper by Robin and Erika.

This function is an interface that allows you to select
a failure to simulate.

***/

choose_scenario() {
scenario = 0;

while (scenario > 6 || scenario < 1) {
printf ("\n\n***** Choose Scenario *hkEA\N V),

printf ("1 - Wrong Scene\n");
printf ("2 - Lens Covered - Second Recovery Attempt\n");

96

printf ("3 - Lights Out\n");

printf ("4 - Fluctuating Readings\n");
printf ("5 - IR Enhancement\n");
printf ("6 - None (Quit)\n");

printf ("\n Select a number corresponding ") ;
printf ("to the failure you want to simulate: => ");

scanf ("%d", &scenario) ;

if (scenario == 1) {
scenariol () ;
if (scenario == 2) {
scenario2 () ;
i% (scenario == 3) {
scenario3 () ;
1f (scenario == 4) {
scenariod () ;
if (scenario == 5) {
scenarios () ;
if (scenario == 6) break;

} /* End While loop */

} /* End Choose Scenario */

/**

* Name: Set Current Instances()

* Purpose: Selects instances to print

* PreCond: No instances for prn frame

* variable chosen. prn frame = 1,2,3
*
*

**/

set_current instances() {

if (prm_frame == 3) robot = CLEMENTINE;
if (prm_frame == 4) robot = CLEMENTINE;
if (prn_frame == 5) robot = CLEMENTINE;
if (prn_frame == 6) robot = GEORGE;

97

if (prm_frame == 7) robot = GEORGE;
if (prn_frame == 8) robot = GEORGE;
y /= End Set Current_ instances() */

prn() {
/***
* *
* Prints the Environment Frame *
* *

**/

if (prm frame == 1) {

printf("\n**");

printf ("\n***** Environment Frame Contents *****\nw).

for (i = 1; i <= NUM_ENVIRONMENTS; i++) {

printf ("Name:
") ;printf ("%s\n",deter_envir (environment list[i].name));

printf ("Width: ") ;printf{"%f", environment list [i] .width
);printf (" feet\n");
printf ("Height : ") ;printf ("%f",environment list [i] .height

) ;printf (" feet\n");
printf ("Length:

") ;printf ("%f",environment list [i].length);printf (" feet\n");
printf ("Light Intensity:

") ;printf ("%s\n",deter_ light (environment_ list [i].light intensity));
printf ("Temperature:

") ;printf ("$f", environment list [i] .temperature) ;printf (" farenheit\n");
printf ("Current Scene:

") ;printf ("%s\n",deter_scene (environment list [i] .curr_scene)) ;

printf ("\n");

printf ("\n*** Scenes for Environment ***\n");
for (j = 1; j <= NUM_SCENES; j++) {

) printf ("$s\n",deter_scene (environment list [i] .has scene[j].n
ame)) ;

printf ("\n**** Tagks for Environment ***\n");
for (j= 1; j<= NUM_TASKS; j++){

if (environment list[i].assoc task[j]== TRUE)
printf ("$s\n", (deter_task(j))7;

98

}

| IVARE S

} /* prn_frame = 1 */

/***

* *
* Prints the Scene Frame Contents *
* *

***/

if (prn_frame == 2) {

prlntf("\n**");

printf ("\n***** Scene Frame Contents *****\n");
for(i =1 ; i <= NUM ENVIRONMENTS; i++) {
for (j = 1; j <= NUM_SCENES; J++) {
printf ("\nScene %s",deter scene(j));
printf ("\nEnvironment :
%s",deter_envir (environment list [i] .has scene(j] .part of));

/* for each scene, update the current object list */
update object(i,j);

/* Print the objects that correspond to the scene */

printf ("\n\n *** Object in this Scene *** \n");
for (k = 1; k <= NUM OBJECTS; k++) {
if (environment list [i] .has_scene[j] .curr_object [k] == TRUE) {

printf ("\n Object:
%s",deter _object (environment list[i] .object_list [k] .name));
printf ("\n Color:
%s",deter color(environment list [i].abject_list [k] .color));
printf ("\n Temperature:

%s\n\n" deter_temp (environment list [i].cbject_ list [k] .temperature));
/* k */

/**
* *

* Prints the contents of the Robot Frame *
* *

**/
if (pm frame == 3 || pm frame == 6) {
i = robot;

printf("\n\n**");
printf ("\n****x Robot Frame Contents *kkkd\n\n") ;

for (i = robot; i <= robot; i++) {

printf ("\n\n") ;

printf ("Robot Name: %s\n",deter robot (robot list[i] .name));

printf ("Environment Name:
%s\n",deter_envir (robot_list [i] .operates in));

printf ("Robot Task:
$s\n",deter task(robot_list[i] .given task));

printf ("Failure type: %$s\n",
deter failure(robot_list[i) .failure type));

printf ("Second Attempt Failure: 3s\n\n",
deter_failure (robot_ list[i].second attempt_ failure type));
printf (" *** Current Sensor List Status: *** \n ");

for (j = 1; j<= NUM_SENSORS; j++) {

/* If the robot does not have a given sensor then don't print

*/
if (robot_list[i].curr_sensors_status[j] != NOT AVAIL) {
printf ("\nSensor: %s",deter_sensor(j));

printf ("\nStatus:
%s\n",deter_status (robot_list [i] .curr_sensors_status[j]));

} /* not avail */

Yy /x5 %/

}/*i*/
} /* end prn_frame = 3/6 */

/***

* *
* Prints the contents of the Sensor Frame *
* *

**/

if (prn_frame == || prn_frame == 7) {

i = robot;

prlntf ("\n\n***") ;
printf ("\n***** Sensor Frame Contents **¥**\n\n");

for(i = robot; i <= robot; i++) {

for(j = BW; j<= NUM SENSORS; j++){

if (robot_list[i] .curr_sensors_status[j] != NOT AVAIL) {

printf ("Sensor:

") ;printf ("%s\n", deter_sensor (robot_list [i] .has_sensor(j] .name)) ;
printf ("Robot :

") ;printf ("%s\n",deter_ robot (robot_list [i] .has_sensor [j] .part of));

printf ("Usage:

%s\n",deter_usage (robot_list [i] .has_sensor [j] .usage)) ;
printf ("Horz_Fov:

%$f",robot_list [i] .has sensor[j] .horz fov) ;printf (" degrees\n");
printf ("Vert_Fov:

$f",robot_list [i] .has sensor[j] .vert_fov) ;printf (" degrees\n");
printf ("Data Type:

$s\n\n\n",deter_data type (robot_list [i] .has sensor[j] .data type));

REA R
printf ("\n\n***** Sensor Beliefs for Active and Suspect Sensors
*****\n\n"r,
printf (" (Support, Against and Don't Know) \n\n");

for (j = 1; j <= NUM_SENSORS; j++) {
if (robot_list[i] .curr sensors_status(j] == SUSPECT) {
printf ("**") ;printf (" %s\n",deter sensor(j));

printf (" _\n");
printf (" Current Belief: %s");

for (k = SUPPORT; k <= DONT KNOW; k++) |

if (k == SUPPORT)

printf ("
%$f",robot_list[i] .has sensor[j] .curr_evidence (k]) ;

if (k > SUPPORT) ({

printf ("\n");

printf ("
%t",robot_list[i] .has_sensor[j] .curr_evidence [k]) ;

if (k == DONT KNOW) printf ("\n\n");

} /* Current Beliefs */

/* Print the previous beliefs for the suspect sensor */

101

printf (" Previous Belief: %s");

for (k = SUPPORT; k <= DONT KNOW; k++) {
if (k == SUPPORT)
printf ("%f",robot_list[i].has sensor(j].prev_evidence [k]) ;
if (k > SUPPORT) {
printf ("\n");
printf ("
%f",robot_list[i] .has sensor(j] .prev_evidence[k]) ;

if (k == DONT _KNOW) printf ("\n\n");
/* Previous Beliefs */

} /* if suspect */
else if (robot_list[i].curr_sensors_status[j] == ACTIVE) {
printf ("\n %s\n", deter sensor (j));

printf (" \n");
/* Print” the current beliefs */

printf (" Current Belief: %s");

for (k = SUPPORT; k <= DONT_KNOW; k++) {
if (k == SUPPORT)
printf ("
%f",robot_list[i] .has_sensor[j] .curr_evidence [k]);

if (k > SUPPORT)
printf ("\n");
printf ("
%t",robot_list[i] .has_sensor(jl.curr evidence[k]);

if (k == DONT_KNOW) printf ("\n\n");
} /* Beliefs */
printf (" Previous Belief: %s");

for (k = SUPPORT; k <= DONT KNOW; k++) {
if (k == SUPPORT)

printf ("%f",robot_list (i) .has_sensor[j] .prev evidence[k]);
if (k > SUPPORT)
printf ("\n");

printf ("
%f",robot_list[i].has_sensor[j].?rev;evidence[k]);

if (k == DONT KNOW) printf ("\n\n");

} /* Previus Beliefs */

AR Y/

/*robot_list[i] .second attempt failure type = HIGH CONFLICT;*/
if(robét_list[i].second;attempt_failure_type != NO_FAILURE) {
printf ("\n\n***** - SECOND RECOVERY ATTEMPT - *****\n\n");
printf (" (Support, Against, and Don't Know) \n\n");

for (j = 1; j <= NUM_SENSORS; j++) {
if (robot_ list[i].curr sensors status[j] == SUSPECT) {
printf ("**") ;printf (" %s",deter_sensor(jg);

printf ("\n \n"
printf (" Second Attempt: %s");

for (k = SUPPORT; k <= DONT_KNOW; k++) {
if (k == SUPPORT) {

printf ("
%t",robot_list [i] .has_sensor[j] .second attempt_evidence [k]) ;

if (k > SUPPORT) {

printf ("\n");

printcf ("
%f",robot_list[i].has_senfor[j].second;attempt_evidence[k]);

if (k == DONT_KNOW) printf ("\n\n");

} /* Second Attempt Beliefs */

} /* if suspect */
else if (robot_list[i].curr_ sensors_status[j] == ACTIVE) {

printf ("\n %s\n", deter sensor(j));
printf (" \n") ;

/* Print the Second attempt beliefs */
printf (" Second Attempt: %s");

for (k = SUPPORT; k <= DONT KNOW; k++) {
if (k == SUPPORT)
printf ("
%f",robot_list[i] .has sensor(j] .second_attempt evidence [k]) ;

if (k > SUPPORT)
printf ("\n");
printf ("
%f",robo;_list[i].has_sensor[j].Tecond_attempt_evidence[k]);

if (k == DONT KNOW) printf ("\n\n");
} /* Second Attempt Beliefs */

103

} /* end if second attempt */

Y /x5 */
; printf ("\n\n *** List of Availible Enhancement for Sensors ***
) for(j = BW; j<= NUM_SENSORS; j++){
for (k = 1; k<= MAX ENHANCEMENTS; k++) {

/* If the robot does not have a given sensor, then don't print
the enhancement */

if (robot_list[i].curr_ sensors status[j] != NOT_AVAIL)
/* if there is no enhancement then dont print the name */

if (robot_list[i] .has_sensor[j].e list[j] .enhancement [k] .name
!= NO_ENHANCEMENT) {

printf("\n %s:",deter sensor(j)); printf (" %s",
deter_enhancement (robot_list [i] .has_sensor(j].e list [j] .enhancement [k] .name

I

}

/**/

/* k */
WY
} /* i */
} /* prn frame = 4/7 */

/***
* *

* Prints the Data Frames *

* *
**/

if (prn_frame == 5 || prn_frame == 8) {

i = robot;

printf("\n\n**" ;
printf ("\n***** Data Frame Contents (Listed by Sensor) *****\n\n");

for(i = robot; i<= robot; i++){
for (k = 1; k<= NUM SCENES; k++)
for (j = 1; j<= NUM SENSORS; j++)

104

/* If no data for the current scene print a message */
if (robot_list[i].has sensor[j].provides[k].scene == NO SCENE) {

<* printf ("No %s sensor data for the
$s\n",deter_sensor(j),deter scene(k)); */

else {

printf ("\nSensor:

%s",deter_sensor (robot_list [i] .has_sensor [j] .provides [k] .provided by)) ;
printf ("\nScene:

%s",deter_scene (robot_list [i] .has_sensor[j] .provides [k] .scene)) ;

printf ("\nRobot : %$s",deter_robot (i));

printf ("\nData_Type:
%s",deter;data_;ype(robo;_list[i].has_sensor[j].provides[k].data_pype));
printf ("\nHorz Size:
%d",robot_list[i].has_sensor[j].provides[k].horz_size);printf(" bits");
printf ("\nVert Size:

%d", robot_list [i] .has_sensor [j] .provides [k] .vert size);printf(" bits");
printf ("\nDepth:
%d",robot_list[i].has_sensor[j].provides[k].depth);printf(" bits\n\n\n");

b s

| VARSI

VAR Y

} /* prm frame = 5/8 */

} /* end pm() */

105

APPENDIX G

This appendix contains code for the string.c routine.

/**
*

* Name : string.c

* Purpose: Determines the string values for the define

* - Date: March 16, 1994

*
**/

#include <stdio.h>
#include "zframes.h"
#include "zkbase.h"

void invalid() ;

char *deter_robot (integer)
int integer;

switch (integer) ({

case 0:
return ("No Robot") ;
break;

case 1:
return ("Clementine") ;
break;

case 2:
return ("George") ;
break;

default:
invalid() ;

J

char *deter envir (integer)
int integer;

switch (integer) {

case 0O:
return ("No Environment") ;
break;

case 1:
return ("Lab") ;
break;

case 2:
return ("Warehouse") ;
break;

default:

invalid() ;
J

char *deter temp(integer)
int integer;

switch (integer) {
case 0:
return("No Temperature") ;
break;
case 1:
‘ return("Below Ambient") ;
break;
‘ case 2:
return ("Ambient") ;
break;
case 3:
return ("Above Ambient") ;
break;
i default:
invalid() ;

char *deter light (integer)
int integer;

| switch (integer) {
case 0:
‘ return("No Intensity");
‘ break;
case 1:
returmnm ("On") ;
break;
case 2:
return ("Off") ;
break;
case 3:
return ("Dim") ;
break;
default:
invalid();

}

char *deter_scene (integer)
int integer;

switch (integer) {

case 0:
return ("No scene") ;
break;

case 1:
return("Drill Press Scene");
break;

case 2:
return ("VCR/Monitor Scene");
break;

case 3:
return ("Door Scene");
break;

case 4:
return ("Student Desk Scene");

107

break;
default:
invalid();

}

char *deter_object (integer)
int integer;

switch (integer) (
case 0:
return("No Object");
break;
case 1:
return ("VCR") ;
break;
case 2:
return("Monitor") ;
break;
case 3:
return ("Cabinet") ;
break;
case 4:
return{"Drill Press");
break;
case 5:
return ("Desk") ;
break;
case 6:
return("Chair") ;
break;
case 7:
return ("Door") ;
break;
case 8:
return("Fire Extinguisher");
break;
default:
invalid();

}
}

char *deter color (integer)
int integer;

switch (integer) {
case 0:
return("No Color") ;
break;
case 1:
return ("Black") ;
break;
case 2:
return ("White") ;
break;
case 3:
return ("Red") ;
break;
case 4:
return ("Orange") ;
break;
case 5:

108

return("Yellow") ;
break;
case 6:
| return ("Green") ;
| break;
case 7:
return ("Blue") ;
break;
case 8: [
return{"Purple") ;
break;
case 9:
return ("Grey") ;
break;
default:
invalid();

char *deter location(integer)
int integer;

switch (integer) {

case 0:
return ("No Location");
break;

case 1:
return("On Ground") ;
break;

case 2:
return ("Elevated") ;
break;

case 3:
return ("Beside") ;
break;

case 4:
return("In Front") ;
break;

case 5:
.return("Behind") ;
break;

default:
invalid();

char *deter task (integer)
int integer;

switch (integer) (
case 0:
return ("No Task");
break;
case 1:
return ("Security Guard") ;
break;

case 2:
return ("Monitor") ;

109

break;
default:
invalid() ;

char *deter sensor (integer)
int integer;

{

switch (integer) {

case 0:
return("No Sensor") ;
break;

case 1:
return("Black & White") ;
break;

case 2:
return("Color") ;
break;

case 3:
return ("Infrared") ;
break;

case 4:
return ("Ultrasonics") ;
break;

case 5:
return ("Ultraviolet™") ;
break;

default:
invalid();

char *deter enhancement (integer)
int integer;

{ .

switch (integer) {

case 0:
return ("No Enhancement") ;
break;

case 1:
return{"bw enhance") ;
break;

case 2:
return("color enhance");
break;

case 3:
return("false color");
break;

case 4:
return ("occupancy grid");
break;

case 5:
"return ("polar plot");
break;

110

case 6:
return ("uv enhance");
break;

default:
invalid();

char *deter_ failure (integer)
int integer;

switch (integer) {

case 0:
return("No Failure");
break;
case 1:
return ("Below Minimum") ;
break;
case 2:
return("Missing Evidence");
break;
case 3:
return ("High Conflict");
case 4:
return ("Highly Uncertain");
break;
default:
invalid();

char *deter usage (integer)
int integer;

switch (integer) {

case 0:
.return("No Usage");
break;
case 1:
return("Detect Visible Light");
break;
case 2:
return ("Detect Range");
break;
case 3:
return ("Detect Heat");
break;
case 4:
return ("Detect Environmental Change ");
break;
default:
invalid() ;

char *deter data type(integer)
int integer;

{

switch (integer) (

case 0:
return("No Data");
break;

case 1:
return ("Image") ;
break;

case 2:
return ("Numeric") ;
break;

default:

invalid();

}

char *deter_status (integer)
int integer;

switch (integer) {

case 0:
return("NOT AVAIL");
break;

case 2:
return("Inactive") ;
break;

case 1:
return ("Active") ;
break;

case 3:
return ("Suspect") ;
break;

default:
invalid() ;

}

char *deter_obj_name (integer)
int integer;

switch (integer) ({
case 0:
return("No Object");
break;
case 1:
return ("VCR") ;
break;
case 2:
return ("Monitor") ;
break;
case 3:
return ("Cabinet") ;
break;
case 4:
return("Drill Press");
break;

112

case 5:
return("Desk") ;
break;

case 6:
return ("Chair") ;
break;

case 7:
return ("Door") ;
break;

case 8:
return("Fire Extiguisher");
break;

default:
invalid();

}

void invalid()
printf ("\n Invalid Number");
.exit(1);

APPENDIX H

This appendix contains code for the misc.c routine.

/**

Name : misc.c
Purpose: March 25, 1994
Commments: Contains misc routines to allocate nodes and insert

nodes

dhdekdkhhdhdhkhhkhkhhhhhhhhhhhhhhhkhdhbhhhbhhdhhhdbbhhkhkdhhbhhb bbb hhhdkkdkkdhhkhkhkkhkkhk

#include
#include
#include
#include
#include
#include

<stdio.h>

<malloc.h>
<string.hs
"zframes.h"
"zkbase .h"
"zglobal.h"

/** % % b d d

Repair or Replace the Current Sensing Plan.

< This seems too simple to have as a function by itself but
I am not sure what else will be needed in order to get the
information from teleSFX to update the knowledge base for a
repaired or replaced plan so, I will leave it like this for

now >.

***/

update_current sensors() {

int robot = CLEMENTINE;

int j;

/* Simulating the retreival of activation conditions from teleSFX */

activation cond avail sensors[0] = TRUE;
activation_cond avail sensors[1l] = FALSE;
activation cond avail sensors(2] = TRUE;
activation _cond avail sensors[3] = FALSE;
activation cond avail sensors[4] = TRUE;

114

/* Update the sensor status in the knowledge base */
for(j = 1; j <= NUM SENSORS; j++){

robot_list [robot] .curr_sensors_status([j] =
activation cond avail sensors[j - 1];

/***

When a New plan is obtained, the scene and the sensors may
change. Therefore both the status of the availible sensors
and the current scene must be updated.

**/

update_scene() {
int i = LAB;

/* Simulates the retreival of the current scene from teleSFX */

current_scene = STUDENT DESK SCENE;

/* Updates the current scene in the knowledege base */

environment list[i].curr_scene = current_scene;

new plan() {

update_current sensors();
update_scene()7;

)

get_failure() {

/**

Defines the enhancement functions for the data obtained from
black and white, color, IR , Ultrasonics and Ultraviolet sensors.
These are "empty" functions because they are defined elsewhere.

I have simply provided a store for them in

the knowledge base so they may be added to the

enhacement list under the appropriate sensor heading.

Additionally,
115

There are 3 dummy function below: bw_enhance(), color enhance() and
uv_enhance () . The names don't stand for real functions but been
included to show how a list of enhancement may associated with each
sensor.

Generally, the enhancement is based on the type of data provided by
a sensor. However, bw enhance() and color_enhance() are used as
examples to provide a store for enhancement procedures that may be
unique to the bw and color sensor even though the bw and color
sensors provide the same type of data.

bbb L
/* BW enhancement */
bw_enhance () {

}

/* Color Enhancement */
color_enhance () {

}

/* IR enhancement */
false_color()

}

/* Ultrasonics enhancements */
occupancy grid() {

}

polar_plot () {

}

/* Ultraviolet enhancement */
uv_enhance () {

J

116

APPENDIX I

This appedix contains global variables.

#ifndef ZGLOBAL H
#define ZGLOBAL H 1
/* This file contains the global varibles used in the televia kbase */

#include "zframes.h"

#define NIL FUNCTION ({char*) 0)
#define NIL DATA ((DATA P) 0)
#define NIL_SCENE ((SCENE_P) 0)

/*

DATA P data ptr;
SCEI}JE_P scene ptr;
*

/* variable hold dynamic data from teleSFX * /

int activation cond avail sensors[NUM SENSORS + 1] ;
int current scene;
#endif

117

APPENDIX J

This appendix contains code for the test.c routine.

/***

Name : test.c

Date: March 30, 1994

Purpose: Performs the knowledge base initializations,
instantiations and print routines

Comments : Calls init frames and prn routine

**/

#include <string.h>
#include <stdio.h>

#include "zkbase.h"
#include "zframes.h"

main() {
/* Initializes all frames in the knowledge base */

init frames();

/* Instantiates all frames in the knowledge base */

put_robot_data() ;
put_sensor_data() ;
put_data();
put_environment datal() ;
put_scene data(7;
put_object _data();

/* Updates Knowledge base for Simulated failure */
/*

cl}loose_scenario 0;
*

/* Updates Knowledge Base to maintain consistency when Simulated
Reconfiguration or Backup Plan takes place */

/*update kbase () ;*/

/* Prints the frame contents */
prn_routine () ;

b/ End Main = */

/**
* *

* Initialize contents of the frames *
* *

***/
init_frames () {

init_raobot frame();
init sensor frame()

init data frame();
init”_environment frame()
init scene frameT);
init_object frame () ;

}ooo/* End Init Frames() */

/**
*

* Prints the contents of the frames *
*

***/

prn_routine () {
for(;;) {
choose frame () ;

set_current instances();
prm{) ;

}

} /* End Print Routine */

119

Barr, A., and Feigenbaum, E. eds., 1982. The Handbook of
Artificial Intelligence. Vol. I. California: William

Kaufmann, Inc.

Cattell, R.G.G. 1991. Object Data Management Object Oriented

and Extended Relational Database Systems. New York:
Addison-Wesley Publishing Company.

Chavez, T. Greg, 1993. Exception Handling for Intelligent
Sensor Fusion. Masters thesis, Colorado School of
Mines.

Coiffet, P. and Gravez, P. 1991. Man-Robot Cooperation:
Toward an Advanced Teleoperation Mode. Tzafestas, S.G,
ed. Intelligent Robot Systems. New York: Marcel Dekker,
Inc. 593-636.

Rich, E., and Knight, K. 1991. Artificial Intelligence. New
York: McGraw-Hill, Inc.

Rogers, E. 1992. Visual Interaction: A Link Between
Perception and Problem-Solving. Tech Report No.
GIT-CC-92/59. Georgia Institute of Technology.

Murphy, R.R. 1992. An Architecture for Intelligent
Robotic Sensor Fusion. Tech Report No. GIT-CC-92/59,
College of Computing Georgia Institute of Technology.

Rogers, E and Murphy, R.R. 1994. Teleassistance for
Semi-Autonomous Robots. Proc. of AIAA Conference in

Intelligent Robots in Field, Factory, Service and
Space, NASA Conference Publication 3251, 500-508.

Schenker, Paul, S. 1991. Intelligent Robots for Space
Application Systems. Tzafestas, S.G. ed. Intelligent
Robotics Systems. New York: Marcel Dekker, Inc.
545-591.

Waterman, D.A. 1986 A Guide to Expert Systems. New York:
Addison Wesley Publishing Company.

	Atlanta University Center
	DigitalCommons@Robert W. Woodruff Library, Atlanta University Center
	5-1-1994

	The design of a knowledge base for a cooperative teleassistance system
	Avare Stewart
	Recommended Citation

	The design of a knowledge base for a cooperative teleassistance system

